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ABSTRACT

The bone scaffold has become a promising alternative in bone tissue engineering due to the limitation associated 
with current bone treatments. However, the selection of scaffold material that could accurately mimic the extracellu-
lar matrix of native tissue remains challenging. Owing to its biological origin properties, natural materials including 
fibrin are widely used as scaffold materials as compared to synthetic materials. Fibrin has been recognized as one of 
the appealing natural biopolymers, which possesses unique characteristic due to its natural formed nano-scaffold, 
which provide a temporary matrix that facilitates cellular activities of cells. Fibrin has shown remarkable effects over 
other biomaterials in inducing angiogenesis and osteogenesis in bone regeneration owing to its mechanical and bio-
logical properties. In this article, we highlight the significance of fibrin materials in facilitating bone regeneration. We 
focus on the manipulation of fibrin composition and on the recent developments of fibrin composites in enhancing 
osteogenesis and angiogenesis for bone healing. 
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INTRODUCTION

Over two million bone grafting treatments have 
been performed annually worldwide, resulting in 
the second most common tissue transplantation after 
blood transfusion (1). There are two major types of 
bone graft which are autograft and allograft. Autograft 
is recognized as the gold standard among all available 
clinical grafts due to osteoconduction, osteoinduction 
and osteogenesis properties that are essentials in bone 
regeneration (1,2). However, donor site morbidity 
and long-term hospitalization have limited the use 
of autografts in bone grafting treatments (1-3). As an 
alternative, the allograft is widely used to overcome the 
donor site morbidity issue and then become the second 
preferable treatment in orthopaedic surgery (1). 

Nevertheless, allograft bone treatment has some 
disadvantages including the lack of osteoinductive 
properties as well as the high risk of infection and 
immune rejection (1-3). In order to overcome these 
limitations, bone scaffold technology has been emerged 

as a new promising approach in the orthopaedic 
industry as the global scaffold technology market size 
worth 1.1 billion USD in 2020 with further growth 
expectations (4). There are four important properties 
of functional bone graft, which are biocompatibility, 
osteoconductive, osteoinductive and vasculogenic 
(2,5). Therefore, an ideal bone scaffold should provide 
a 3D microenvironment that mimics the mechanical 
properties and extracellular matrix (ECM) characteristic 
of native tissue which allows cells adhesion, cells 
proliferation and cells differentiation (3,5,6). Besides, 
one of the important mechanisms in bone regeneration 
is the coupling of angiogenesis and osteogenesis (7). Fig. 
1 shows the growth factors signaling between osteoblasts 
and endothelial cells in bone repair. Therefore, material 
selection plays a vital role in scaffold fabrication to fulfil 
the ideal scaffold requirements that facilitating cells 
growth while maintaining biomechanical support.

Fibrin is one of the remarkable biomaterials with 
unique characteristics due to its naturally formed nano-
scaffold, which provides a temporary matrix to facilitate 
cellular activities. Formation of fibrin matrix through 
clotting cascade does not only act as a blockade to 
prevent further blood loss at the injury site but also as a 
temporary scaffold for cells growth during tissue healing 
and remodeling (8,9). Besides fibrinogen and thrombin 
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rigidity and stiffness of the matrices (8,15). Mechanical 
stiffness of fibrin matrix that was affected by clot ligation 
gave great effect on the cell activity through the cell and 
ECM interaction (8). Interaction of cells with aligned 
topographical has been regulating the cells activity which 
mimics the microenvironment of native tissue (16,17). 
Fibrin matrix with lower fibrinogen concentration has 
shown low stiffness value but with enhanced colony-
forming efficiency and maintained mesenchymal 
stromal cells (MSCs) differentiation potentials (18). 

Therefore, manipulating the composition of fibrin 
during the polymerization process helps in predicting 
the mechanical properties of the fibrin matrix which 
significantly influencing the behaviour of the cells. 
Recently, autocalcification properties of a cell-free fibrin 
gel in an osteogenic medium have been observed thus 
showing the capability of fibrin for calcium deposition 
in the osteogenic microenvironment (19). Taking 
advantage of all unique characteristics, the fibrin matrix 
has been used to mimics the mechanical architecture of 
native bone tissue (20,21).

Natural fibrin that is derived from blood plasma is 
essential to many physiological processes such as 
tissue hemostasis and angiogenesis that involve in 
inducing cell signaling and cell adhesion (22,23). 
Natural fibrin provides a temporary matrix during the 
rebuilding and repair of tissue, making it an attractive 
pro-angiogenic biomaterial if is compared to chitosan 
which is an angiogenesis inhibitor (23). A study showed 
that autologous fibrin hydrogel has accelerated the 
revascularization and cells migration in humans 
mandibular by tuning the growth of fibroblasts and 
osteoblasts (24). Another study has shown that the 
usage of fibrin hydrogel for MSCs implantation at the 
femoral defect rats accelerated angiogenesis and bone 
regeneration of long bone healing (25). Besides, fibrin 
biopolymers have enhanced in-vivo vascularization 
together with bone formation (26-28).

Besides pro-angiogenic and bioactive properties, fibrin 
possesses excellent biocompatibility with minimal 
inflammation and foreign body reaction (29-31). Other 
natural material such as alginate does not have same 

concentrations, the formation of the fibrin network is also 
regulated by other parameters such as salt concentration, 
pH, temperature and other plasma proteins (9). Various 
applications of fibrin such as microbeads, coating agent, 
injectable hydrogel and pre-formed scaffolds in bone 
tissue engineering have been investigated due to its 
versatile biological and mechanical properties. Here, we 
highlight the uniqueness of fibrin properties and various 
strategies of fibrin fabrication for bone osteogenic and 
angiogenic developments. 

MECHANICAL AND BIOLOGICAL PROPERTIES OF 
FIBRIN

Bone mechanical properties play a crucial role in ensuring 
successful bone regeneration. The differentiation of 
precursor cells in osteogenesis is influenced by the local 
mechanical environment (3,10). One of the important 
bone mechanical properties is viscoelastic with different 
regions of bone has different viscoelastic properties 
(3,11). Bone exhibits viscoelastic behaviour that affects 
the ECM of native tissue in providing both mechanical 
stability and biochemical cues for cell growth (3,12). 
Thus, a scaffold with viscoelastic property closer to 
native bone has demonstrated good cellular viability 
and calcium secretion (13). 

Therefore, the uniqueness of fibrin viscoelastic 
behaviour due to covalent cross-linking within fibrin 
networks that give clot rheological properties is 
becoming an advantage in mimicking the properties of 
specific native bone (8,14). A fibrin network is produced 
by cleaving the fibrinopeptides from fibrinogen to form 
the protofibrils or fibrin polymer, as shown in Fig. 2. 
Moreover, manipulating fibrinogen concentration affects 
the mechanical properties of fibrin by increasing the 
fibrinogen concentration resulted in doubling the elastic 
moduli and the maximum load which enhancing the 

Figure 1:  Growth factors signaling between osteoblasts and 
endothelial cells during bone repair

Figure 2:  The transformation of fibrin from fibrinogen during 
the clotting process
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excellent biological properties due to uncrosslinked 
anionic polysaccharide structure (31). A study has 
indicated that fibrin is superior to collagen, a major 
bone organic component in terms of protein adsorption, 
osteoblast proliferation, and osteoblast differentiation 
(32). Fibrin has shown greater fibronectin-binding 
capacity of fibrin than collagen, even though fibronectin 
can interact with other cellular ligands, collagen (32,33).

Moreover, the intrinsic biological properties of fibrin 
have also allowed the binding with various growth 
factors such as Fibroblast Growth Factor (FGF), Vascular 
Endothelial Growth Factor (VEGF) and Insulin-like 
Growth Factor-1 (IGF-1) that are either secreted in normal 
tissue or delivered to injury site (8,9,34). The efficiency 
of fibrin as a growth factor delivery vehicle has been 
observed by the slow release of the bone morphogenetic 
protein (BMP-2) and VEGF from growth factors-doped 
fibrin glue within a porous titanium scaffold that 
enhanced the bone formation with angiogenesis inside 
the scaffold (35). Human fibrin concentrated growth 
factor membrane (CGF) acted as growth factor delivery 
for recombinant human bone morphogenetic protein-2 
(rhBMP-2) that overcame the disadvantages CGF 
membrane’s degradation properties (36).

Furthermore, fibrin gel has been identified as a cell 
delivery system due to degradation properties that 
allowed the cell migration from fibrin to calcium 
phosphate cement surface with the calcium phosphate 
cement improved the stability of the fibrin gel (37). 
Besides, fibrin microbeads have shown the capability in 
delivering the cells to a specific targeted area for the 
bone regeneration process (38,39). Moreover, alginate-
fibrin microbeads with fast-degradable properties 
have shown the release of human umbilical cord 
mesenchymal stem cells (hUCMSCs) after a short period 
with high expression of alkaline phosphatase (ALP), 
osteocin (OC), collagen I, and Runx2 (38). Besides, two 
months of observation on implanted fibrin microbeads 
encapsulated mesenchymal stem cells into mouse skull 
showed the defected area was filled with bone-like 
tissue that similar to native bone (39). Fig. 3 summarizes 
the mechanical and biological properties of fibrin.

APPLICATIONS OF FIBRIN IN BONE TISSUE 
ENGINEERING 

Manipulation of Fibrin Composition 
The performance of natural fibrin depends on through 
clotting cascade of thrombin on fibrinogen originated 
from blood plasma (8,9,40). It has been reported that 
higher fibrinogen concentration significantly improved 
cell proliferation and cell adhesion due to enhanced 
surface roughness of the scaffolds (41,42). Enhancement 
of surface roughness is due to adsorption of fibrinogen or 
by the function of an epitope region of β15–42 found in 
fibrinogen (14,43). High fibrinogen concentration also 
affected intracellular signaling and cell differentiation 
that increased in the expression of ALP and osteocalcin 
(42,44). 

It has been demonstrated that the presence of fibrinogen 
within a chitosan scaffold enhanced the bone formation 
of rat bone by inducing angiogenesis and osteogenic 
capacity in the defected area (45). Besides, a study showed 
higher concentration of fibrinogen demonstrated more 
in-vivo bone formations (46). However, a comparison 
of fibrin matrices with different fibrinogen showed 
that proliferation and osteogenic differentiation of rat 
mesenchymal stem cells (MSCs) was enhanced with 
lower fibrinogen concentrations which highlighted the 
importance of mechanical and topological properties of 
fibrin matrix in facilitating cell growth (18). 

In another study, low thrombin concentration has been 
reported able to stimulate ALP’s gene expression and 
angiogenic factors of osteoblastic cells on thrombin-
coated biphasic calcium phosphate ceramic (47). 
Another finding demonstrated the role of thrombin 
in accelerating osteoblast differentiation with a 
high concentration of thrombin enhanced calcium 
deposition, ALP activity and Runx2 level of osteoblast 
cells (48). Therefore, high thrombin concentration has 
been suggested for altering the fibrin structure and thus 
enhancing the fibronectin-binding capacity (48). 

Development of Fibrin Composite In Mimicking Bone 
Tissue
In recent years, the fabrication of nanofibrous scaffolds, 
which could mimic the native bone extracellular matrix 
has become prevalent in bone tissue engineering. 
Various strategies to develop an appropriate fibrin 
composite in improving the mechanical properties of the 
bone scaffold have been explored. One of the strategies 
to develop nanofibrous fibrin scaffolds is by using poly 
(methyl-methacrylate) beads to form an interconnected 
microporous network with enhanced mechanical 
properties (49). Besides, a study has demonstrated the 
ability of fibrin in improving the mechanical properties 
of the PCL fibres as a potential material for bone repair 
(50). Table I shows recent fibrin composites development 
for bone osteogenesis and angiogenesis. Fibrin based Figure 3:  The mechanical and biological properties of fibrin
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Table I: Osteogenic and Angiogenic Properties of Fibrin/Fibrinogen Composites

Composite In-vitro/In-vivo Findings References

Fibrin Mesenchymal stem cells (MSC) Changing fibrinogen concentration reversely affects MSC proliferation and 
osteogenic differentiation

 18

Fibrin TG2 gene-modified
ectomesenchymal stem cells 
(TG2-EMSCs)

Enhancing osteogenic differentiation, extracellular matrix proteins deposition, 
bone matrix calcification

19

Fibrin with TG2-EMSCs Cranial defects in rats Bone regeneration after 12 weeks 19

Fibrin with human dental pulp stem cells (DPSC) Mice with alveolar bone defect Enhancement of bone formation and vascularization 26

Fibrin-based bioink Rat with femoral defect Enhancement of vascularization for critically-sized bone defect 27

Fibrin bioink Immunodeficient mice Formation of blood vessel formation and calcified bone matrix 28

Fibrin biopolymer Rat femur Accelerating bone regeneration by modifying inflammatory environment at the 
bone defect

29

Fibrin, alginate and calcium phosphate Osteoblast cells (MC3T3-E1) Enhancing osteogenic differentiation 31

Fibrin, alginate and calcium phosphate Chorioallantoic membrane (CAM) 
assay

Enhancing in-vivo angiogenic properties 31

Human fibrin concentrated growth factor 
membrane (CGF)

Subcutaneous tissues of nude 
mice

Inducing several bony islands and the cartilage nodule after14 days 36

Fibrin and calcium phosphate cement (CPC) Craniofacial defects in 
rats

Bone formation over 12 weeks 37

Fibrin and calcium phosphate granules Human mesenchymal stem cells 
(hMSC)

High fibrinogen concentration affects hMSC proliferation and osteogenic differ-
entiation

41

Fibrin in collagen scaffold Osteoblast cells
(MG-63)

Changing fibrinogen concentration improved cells adhesion, cells proliferation, 
and cells differentiation 44

Fibrinogen in chitosan scaffold Critical size bone defects in rats Improving bone regeneration, bone angiogenesis with eliciting immune response 45

Fibrin with calcium phosphate and glass ceramic Swiss albino mice Higher concentration of fibrinogen demonstrated   more bone formation in the 
extraskeletal site of 46

Calcium phosphate ceramic coated with Fibrin Osteoblast cells (MC3T3-E1) Changing thrombin concentration increased the angiogenic potential of osteo-
blasts 47

Fibrin Osteoblast cells (MC3T3-E1) Changing thrombin concentration accelerated osteoblast differentiation
48

Fibrin- with polycaprolactone (PCL) Human osteosarcoma
cell line

Enhancing the mechanical properties, cell attachment and cell distribution 50

Fibrin based scaffold Adult rabbits Enhancement of bone repair of osteochondral defects with perfect restoration of 
tibial defects for young adult rabbits

51

Fibrin sealant Human Muscle-Derived Stem 
Cell

Enhancement of bone Regeneration 52

Fibrin with graphene oxide, iron oxide nanopar-
ticles and hydroxyapatite

Osteoblast cells
(MG-63)

Enhancement of biocompatibility, alkaline phosphatase activity, and calcium 
deposit

53

Fibrin with graphene oxide, iron oxide nanopar-
ticles and hydroxyapatite

Albino-Wistar rat Bone healing potential of critical-size tibia defect 53

Fibrin biopolymer and biphasic calcium 
phosphate 

Wistar rats Acceleration of bone regeneration with the combination of photobiomodulation 
therapy (PBMT) 

54

Fibrin biopolymer (FBP) and biphasic calcium 
phosphate

Rat femurs Enhancing the bone matrix with incorporation with MSCs 55

Hydroxyapatite-gelatin-chitosan-fibrin-bone ash Osteoblast cells Excellent biocompatibility and cells attachment 56

Fibrin sealant with bovine mineral Rabbit sinus Reducing the bone healing period 57

Fibrin-platelet glue with bone fragments Human with maxillary or mandib-
ular problems

Bone healing with reduced infections and length of hospital stay 58

Fibrin with calcium carbonate scaffold Human bone marrow stroma cells 
(hBMSCs)

Higher cells seeding efficiency for longer periods  59

Fibrin with nanocrystalline hydroxyapatite Mouse with calvarial defect 
model

Enhancement of bone formation 60

Collagen-fibrin with hydroxyapatite Endothelial cells and mesenchy-
mal stem cells (MSC)

Regulating the endothelial network formation. 61

Fibrin with hydroxyapatite Endothelial cells and fibroblasts Regulating the angiogenesis formation 62

Collagen-fibrin hydrogel MSC/HUVEC spheroids Upregulating the osteogenic differentiation with pre-vascular network formation 63

Platelet‐rich fibrin Endothelial cells and osteoblasts Formation of lumen structures and with higher expression of the proangiogenic 
factors

64

Platelet-rich fibrin, silicon and 
autologous bone

New
Zealand rabbits

Bone mineralization after 3 weeks 67

Platelet-rich fibrin with 
Mg ring

Osteoblast cells (MC3T3-E1) Enhancing the calcium deposition 58



Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346)

89Mal J Med Health Sci 18(SUPP6): 85-94, April 2022

scaffold has enhanced the bone repair process with 
the perfect restoration of tibial defects for young adult 
rabbits (51). Fibrin sealant also has enhanced bone 
formation with the incorporation of Human Muscle-
Derived Stem Cells (52). Besides, a composite of fibrin 
and graphene oxide also has improved the in-vitro 
osteogenesis properties and has shown bone healing 
potential of critical-size tibia defect (53). 

Another approach to create bone environment is 
by incorporating mineralized components such as 
calcium phosphate and calcium carbonate in inducing 
osteogenesis (3,41,54). A combination of biocompatible 
synthetic mineralized materials and fibrin biopolymer 
has been suggested as the right scaffold material for 
bone repair therapies due to clotting formation that 
allowing cell adhesion and proliferation (55,66). The 
incorporation of fibrin with any type of bone components 
has reduced the bone healing period since only a small 
amount of bone substances were needed to achieve 
reliable bone formation (57). Additionally, significant 
improvement in the bone healing process with lessening 
in infections has been observed through a composite 

of fibrin-platelet bone fragments (58). Besides, fibrin 
coating on calcium carbonate scaffold has enhanced 
the attachment of human bone marrow stromal cells 
(hBMSCs) with high and uniform cell seeding (59). 
Moreover, the presence of fibrinogen into bone powder 
scaffold has accelerated bone regeneration at rabbit 
calvarial defected area proved the effect of fibrin on 
osteoinductivity properties (41). It was also observed 
that deposition of nanocrystalline hydroxyapatite on 
fibrin surfaces has increased the alkaline phosphatase 
activity and osteoblast gene expression with further in-
vivo observation showed the bone formation in mice 
defected area (60).

Ideally, the incorporation of fibrin as bone biomaterials 
also facilitates the formation of angiogenesis (45,61,62). 
Besides, collagen-fibrin hydrogel composite has been 
proved to upregulated blood vessels formation together 
with osteogenic properties (63). Co-culturing the 
endothelial cells and osteoblast cells within platelet-rich 
fibrin resulted in higher expression of the proangiogenic 
factors by (64). Furthermore, the combination of fibrin 
and hydroxyapatite in mimicking highly porous and 

Table I: Osteogenic and Angiogenic Properties of Fibrin/Fibrinogen Composites (continued)

Composite In-vitro/In-vivo Findings References

Platelet-rich fibrin on titanium discs Osteoblast cells 
(MG-63)

Enhancing alkaline phosphatase activity and bone mineralization 69

Platelet-Rich Fibrin in Titanium Mesh Human with Vertical Maxillary 
Defect 

Improving the quality and quantity of bone formation by combining with recom-
binant human bone morphogenetic protein 2 (rhBMP-2)

70

Fibrinogen-coated Titanium disk Mouse muscle myoblast cell line 
(C2C12)

Enhancing the ALP activity and mineralization 71

Platelet-rich fibrin with tricalcium phosphate 
(TCP)

Rabbit osteoblasts Enhancing cells attachment, cells proliferation, cells migration, ECM formation 
and bioactive release,

72

Platelet-rich fibrin with tricalcium phosphate 
(TCP)

New Zealand white rabbits Bone regeneration after 8 weeks 72

Platelet-rich fibrin with polycaprolactone (PCL) Human primary osteoblasts Enhancing cell activity 73

Platelet-rich fibrin with PCL/chitosan Human mesenchymal stem cells 
(HMSCs)

Enhancing osteogenic differentiation, ALP and calcium deposition 74

Platelet-rich fibrin with allogenic bone substi-
tutes 

Human osteoblast cell line Enhancing cell activity 75

Platelet-rich fibrin with alloplastic and xenogene-
ic bone substitutes

Chorioallantoic membrane (CAM) 
assay

Enhancing in-vivo angiogenic properties 76

Platelet-rich fibrin with porcine-derived collagen 
matrices

Chorionallantoic membrane 
(CAM) assay 

Enhancing in-vivo angiogenic properties 77

Platelet-rich fibrin with deproteinized bovine 
bone mineral

New Zealand rabbits Enhancing vascular formation, bone remodeling and collagen formation 78

Platelet-rich fibrin with nanohydroxyapatite Human with intra-bony defects 
(IBDs) 

Increasing bone density and VEGF expression 79

Plasma-rich-fibrin with PCL Rat with critical-sized calvaria 
defect 

Enhancement of mineralization areas  80

Advanced platelet-rich fibrin (A-PRF) with 
autogenous iliac crest bone 

Human with alveolar cleft Enhancing bone regeneration 81

A-PRF with serum albumin-coated bone allograft Human who required maxillary 
sinus augmentation (MSA)

Enhancement of implant placement with reduction in total treatment time 82

A-PRF with platelet-rich plasma, lyophilized 
bovine bone and atelocollagen type 

Chronic marginal
periodontitis was induced in 
sheep;

Facilitating alveolar bone regeneration 83

A-PRF with zirconia Human with highest grade and 
stage periodontitis

Enhancement of bone regeneration and implant integration with the combination 
of Hyperbaric oxygen therapy (HBOT) before and after implantation

84

A-PRF with gold nanoparticles Human Mesenchymal Stem Cells Enhancement of osteogenic capacity 85

Leukocyte-platelet-rich fibrin with collagen and 
nano beta-tricalciumphosphate (nβ-TCP) 

New Zealand white albino rabbits Enhancing new bone formation 86

L-PRF with Multi-walled carbon nanotube/hy-
droxyapatite (MWCNT/HA)

Sheep Enhancement of bone regeneration, biocompatibility and osteoconductivity 87
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interconnected scaffolds has enhanced the formation of 
newly formed vessel sprouting within the mineralized 
bone matrix (61,62). Previously, collagen-fibrin and 
hydroxyapatite composite has demonstrated the 
formation of endothelial networks in 24-well plates due 
to modulation in stiffness property (61). Additionally, 
fibrin has been utilized as one component for tumor 
microenvironment with results showed the direct 
interaction between angiogenic sprouts and tumor 
spheroids in the 3D bone-mimetic composite of 
hydroxyapatite and fibrin (65). 

Recently, various composites of platelet-rich fibrin (PRF) 
with other biomaterials have been developed in making 
new regenerative bone materials (66-79). Folded PRF 
with human cortical bone matrix gelatin has shown 
better resistance against proteolytic digestion which is 
important in reducing the degradation rate of the bone 
matrices (66). Besides, a combination of PRF, silicon 
and autologous bone has sped up the in-vivo bone 
mineralization (67). Another interesting approach is 
the combination of PRF with alloy materials such as 
Magnesium (Mg) and Titanium that has enhanced the 
in vitro bone mineralization (68,69). By combining 
with recombinant human bone morphogenetic protein 
2 (rhBMP-2), PRF in Titanium mesh has improved the 
quality and quantity of bone formation in humans 
with vertical maxillary defects (70). The integration 
of fibrin with alloy materials that have shown good 
osteogenic differentiation properties will be beneficial 
to the development of functional bone implants in bone 
regeneration (68-71). 

Moreover, PRF is a natural biopolymer with bioactive 
components such as platelet cytokines and growth 
factors (68). Therefore, the incorporation of PRF is able 
to overcome the limitation of tricalcium phosphate 
(TCP) scaffold with the improvement of osteoblast 
cells morphology in-vitro as well as osteogenesis 
properties in-vivo (72). In the presence of PRF, the 
biocompatibility and bioactivity of non-active materials 
such as polycaprolactone (PCL) has been improved and 
subsequently has facilitated bone formation (73,74). 
Additionally, with the incorporation of PRF, bone tissue 
formation was enhanced with more calcium deposition 
and osteogenic differentiation due to the improvement of 
hydrophilicity and porosity of the PCL/chitosan scaffold 
(74). Besides, the combination of PCL with plasma-rich-
fibrin has increased the mineralization areas of rats with 
critical-sized calvaria defects (80).

Not only osteogenic, but PRF composites also have shown 
significant angiogenic properties (76-79). Combination 
of PRF with alloplastic and xenogeneic bone substitutes 
have upregulated in-vivo vessels formation, which 
might be due to the release of growth factor through 
the fibrin polymer (76). Besides, a combination of PRF 
with collagen biopolymer has demonstrated in-vivo 
angiogenic potential (77). Furthermore, PRF composites 

have demonstrated their role in coupling angiogenesis 
and osteogenesis at the early stage of the in-vivo bone 
healing period (78-79). However, the stability of both 
PRF alone and PRF composites at long term studies are 
still unknown (79). Besides, advanced platelet-rich fibrin 
(A-PRF) and Leukocyte-platelet-rich fibrin (L-PRF) also 
have been used widely for bone tissue engineering (81-
87). Fig. 4 summarizes the osteogenesis and angiogenesis 
potentials for various types of fibrin composites that will 
give useful insight in making a functional bone scaffold. 
However, more studies are needed specifically to 
observe long-term angiogenesis and osteogenesis within 
a fibrin bone scaffold.

Figure 4:  Osteogenesis and angiogenesis potentials for various 
types of fibrin composites

CONCLUSION

In this review we have summarized the unique traits 
owned by fibrin, making it an excellent choice for 
application in bone tissue engineering. Indeed, the 
combination of biocompatibility, biodegradability 
and intrinsic biological activity characteristics of fibrin 
appears to be an attractive choice for scaffold material 
with high potential in coupling both angiogenesis and 
osteogenesis which is crucial in ensuring successful 
bone regeneration. The addition of other materials 
such as calcium phosphate does not only improve 
the mechanical strength but mimicking the structure 
and function of the natural bone ECM. However, the 
degradation properties of fibrin should be considered 
when designing the experiments to ensure the prolonged 
stability of the fibrin scaffolds. Nevertheless, extensive 
studies are needed to tackle the degradation issue for 
optimal applications of fibrin as bone scaffolds.
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