SPECIAL STAINS IN HISTOPATHOLOGY DR RAZANA MOHD ALI #### SPECIAL STAINS IN HISTOLOGY - STAINS FOR MICROORGANISM - **CONNECTIVE TISSUE STAINS** - STAINS FOR PIGMENTS AND MINERAL #### INTRODUCTION cryptococcus - Most infectious agents are rendered harmless by direct exposure to formal saline (fixative). - Standard fixation process should be sufficient to kill microorganisms. - H&E stains may stain many organisms. Some require special techniques to demonstrate their presence. - Reason: small size, hydrophobic, weakly charged (mycobacteria, spirochaetes and cryptococci) - Microorganism can also be detected through immunohistochemistry. | STAIN | COMPONENTS STAIN | POSSIBLE USES | | |-------|---|---|---| | GRAM | GM POSITIVE – BLUE /PURPLE GM NEGATIVE – RED NUCLEI – RED OTHER TISSUE – VARIABLE, YELLOW | Identification of
BACTERIA,
ACTINOMYCETES,
NOCARDIA,
AMOEBIASIS | Gram control should have both gram positive and negative. | # BACTERIA -H&E VS GRAM STAIN | STAINS | COMPONENTS STAIN | POSSIBLE USES | | |---|--|---|--| | ACID FAST BACILLI STAINS (ZIEHL NEELSEN, KINYOUN (COLD ZN)) WADE FITE | MYCOBACTERIUM—
BRIGHT RED AND
BEADED
NOCARDIA —PINK
TISSUE — PALE BLUE | Identification
for
Mycobacterium
-tuberculi
-leprae | Mycobacterium are difficult to demonstrate by gram stain → they possess a capsule containing long chain fatty acid (mycolic acid) → makes them hydrophobic. The fatty capsule resists removal of stain by | | | | | acid and alcohol solution (acid and alcohol fastness) They are PAS positive due to the carbohydrate content in their cell walls (esp if large amount are present) Acid fastness can be destroyed by decalcification using strong acid -> therefore formic acid is recommended | | STAIN | COMPONENTS STAIN | POSSIBLE USES | | |----------------|---|--|--| | WARTHIN STARRY | SPIROCHAETES - BLACK OTHER BACTERIA (eg H PYLORI –BLACK TISSUE PALE YELLOW TO LIGHT BROWN | Identification of spirochaetes, H pylori | Eg. of spirochaetes (gram-negative, motile, spiral bacteria with endocellular flagella) Treponema pallidum causing syphilis Leptospira interrogans causing leptospirosis | | | STAINS | COMPONENTS STAIN | | |-------|--|---|--| | FUNGI | 1. SILVER STAINS (GROCOTT METHENAM INE SILVER NITRATE- GMS) 2. PAS | FUNGI (BLACK) MUCIN (TAUPE TO GRAY) TISSUE – GREEN FUNGI CELL WALL - MAGENTA | Seen fairly well in H&E, but are demonstrated well with GMS and PAS. (yeasts, hyphae and spores) Fungal cell walls are rich in polysaccharides which can be converted by oxidation to dialdehydes. Dialdehydes are then detected by silver solution. In suspected fungal infections | | ORGANISM | STAINS | COMPONENTS STAIN | | |------------------------|---|---|---| | HELICOBACTER
PYLORI | GIEMSA, TOLUIDINE BLUE, WARTHIN STARRY, CRESYL VIOLET ACETATE (CVA) | GIEMSA HELICOBACTER AND NUCLEI – BLUE BACKGROUND -SHADES OF BLUE VIOLET | • | | | DIFF QUIK | H PYLORI –DARK BLUE
OTHER BACTERIA – BLUE
NUCLEI – DARK BLUE | | - A spiral vibrio organism causing chronic gastritis. - Can be identified by H&E. # HELICOBACTER PYLORI | STAIN | COMPONENTS STAIN | POSSIBLE USES | | |--------|--|--|--| | GIEMSA | PROTOZOAN – BLUE
NUCLEI- RED VIOLET
BACKGROUND – PINK
PALE BLUE | Identification of protozoa
such as Entamoeba
histolytica, Giardia
lamblia which causes
gastroenteritis | Trophozoites of entameoba contains small nucleus and ingested red blood cells PAS positive - Magenta | | | | | | #### CONNECTIVE TISSUE STAINS - Connective tissue in latin to bind - Function to connect together and provide support to other tissues of the body - Consists of cellular portion in a surrounding framework of non cellular substance. - Cellular portion consists of fibroblasts, mast cells, histiocytes, adipose cells, reticular cells, osteocytes, chondrocytes etc - Intercellular substance consists of amorphous material (mucopolysaccharides) and formed elements (collagen, reticular fibers, elastic fibers) #### CONNECTIVE TISSUE # CONNECTIVE TISSUE STAINS | SUBSTANCE | STAINS | COMPONENT
STAINS | POSSIBLE USES | |-----------|------------------|---|--| | COLLAGEN | MASSON TRICHROME | COLLAGEN — BLUE /GREEN MUSCLE — RED RETICULIN — BLUE GREEN FIBRIN - RED | Trichrome stains – three colours, for selective demonstration of muscle, collagen fibers, fibrin and erythrocytes. Factors affecting trichrome staining: Tissue permeability and dye molecular size When the protein component of a tissue is exposed to a fixative agent an insoluble protein network is formed. Different proteins will form network with different physical features. The structure and density of protein network may relate directly to the staining reactions of the tissue components. Eg: smaller dye molecules will stain any 3 tissue types, however larger dye molecules will penetrate only collagen leaving muscle and erythrocytes unstained. Heat Increase rate of staining and penetration by larger dye molecules pH Low pH 1.5 to 3.0 is required to achieve adequate and even staining. | # MASSON TRICHROME # INDICATIONS | MASSON TRICHROME | DIFFERENTIATE COLLAGEN AND MUSCLE IN TUMOURS | |------------------|--| | | IDENTIFY AN INCREASE IN COLLAGENOUS TISSUE | | | INDICATE FIBROSIS IN LIVER CIRRHOSIS | | | INDICATE FIBROSIS IN PYELONEPHRITIS | #### MASSON TRICHROME SCORING — IN RESEARCH #### Table 2: Parameters assessed to calculate healing score | Number | Histological Parameter | |--------|---| | 1 | Amount of granulation tissue (profound-1, moderate-2, scanty-3, absent-4) | | 2 | Inflammatory infiltrate (plenty-1, moderate-2, a few-3) | | 3 | Collagen fiber orientation (vertical-1, mixed-2, horizontal-3) | | 4 | Pattern of collagen (reticular-1, mixed-2, fascicle-3) | | 5 | Amount of early collagen (profound-1, moderate-2, minimal-3, absent-4) | | 6 | Amount of mature collagen (profound-1, moderate-2, minimal-3) | Number 1-4: H and E, Number 5-6: Masson's trichrome stain, old collagen fibers take deep blue color and the new collagen fibers stain light blue | Table 4: Parameters of histologic assessment of wound | | | | |--|---|--|--| | Semi-quantitative method | Quantitative method | | | | Wound reepithelialization:
migration of keratinocytes,
bridging of cells, keratinization | Polymorphonuclear leucocytes/
tissue macrophages ratio | | | | Inflammatory cells: absence/
presence (mild/moderate/marked) | Percentage of reepithelialization | | | | Fibroblasts: absence/presence (mild/moderate/marked) | Area of the granulation tissue | | | | New vessels: absence/presence (mild/moderate/marked) | - | | | | Collagen: absence/presence (mild/moderate/marked) | - | | | #### CONNECTIVE TISSUE STAINS | SUBSTANCE | STAIN | COMPONENT STAINS | | |------------------|---------------------|--|--| | ELASTIC FIBERS | VERHOEFF VAN GIESON | COLLAGEN – RED MUSCLE, ELASTIN, RETICULIN – YELLOW NUCLEI – BLUE BLACK | Elastic fibers in large vessels - aorta | | RETICULIN FIBERS | RETICULIN STAIN | RETICULIN FIBERS - BLACK | Demonstrates reticular fibers and basement membrane material | #### STAINS FOR PIGMENTS AND MINERAL #### STAINS FOR PIGMENTS AND MINERAL | | STAINS | COMPONENTS STAIN | USAGE | |-------------|------------------------------|--|--| | HEMOSIDERIN | PERLS PRUSSIAN BLUE REACTION | FERRIC IRON — BLUE NUCLEI — RED BACKGROUND | Breakdown product of hemosiderin composed of ferric iron and protein. Seen as yellow brown granules Unmasking of ferric iron in hydroxide form by dilute HCl Prussian blue reaction – (ferric hydroxide + potassium ferrocyanide=ferric ferrocyanide (insoluble blue compound) In Hb and myoglobin – iron is tightly bound within protein complex- cannot be demonstrated by using traditional technique *Best positive control – postmortem lung tissue containing good amount of iron positive macrophages. Bone marrow (iron stores, myelodysplasia), liver (hemochromatosis) | # PRUSSIAN BLUE A Prussian blue iron stain demonstrates the blue granules of hemosiderin in hepatocytes and Kupffer cells in liver. # STAINS FOR PIGMENTS AND MINERAL | | STAINS | COMPONENTS STAIN | | |------|-----------------------|---|---| | BILE | MODIFIED
FOUCHET'S | BILE-EMERALD BLUE GREEN MUSCLE- YELLOW COLLAGEN - RED | Distinguishing bile pigment from lipofuscin. Both appear yellow brown on H&E. Pigment → converted to green colour of biliverdin and blue cholecyanin by the oxidative action of the ferric chloride in the presence of trichloroacetate | # MASSON FONTANA | MELANIN | 1. MASSON FONTANA | MELANIN, ARGENTAFFIN
GRANULES,
CHROMAFFIN
GRANULES, SOME
LIPOFUSCIN – BLACK
NUCLEI –RED | Normally occurs as light brown to black granules in hair, skin, eyes, substantia nigra Melanin are blackened by acid silver nitrate solution. Melanin reduces ferricyanide to ferrocyanide with production of prussion blue in the presence of ferric salts | |---------|----------------------|--|---| | | 2. SCHMORLS REACTION | MELANIN – DARK BLUE
NUCLEI - RED | Pigments identification of melanin in
melanomas and secretory granules in
neuroendocrine tumours | # MELANIN #### STAINS FOR PIGMENTS AND MINERAL | | STAIN | COMPONENT
STAINS | | |---------|----------------|---|--| | CALCIUM | VON KOSSA | MINERALISED BONE (CALCIUM) – BLACK OSTEOID - RED TISSUE – RED | Demonstration of phosphate and carbonate radicals with calcium in tissues ID of michaelis guttman bodies in malakoplakia Not specific as melanin will also reduce silver to give a black deposits. | | | ALIZARIN RED S | CALCIUM –
ORANGE-RED | | #### CONCLUSION • SPECIAL STAINS ENHANCE DETECTION AND LOCALISATION OF INDIVIDUAL TISSUE COMPONENT