
Mal J Med Health Sci 17(SUPP13): 47-53, Dec 2021 47

Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346)

ORIGINAL ARTICLE

Requirements-Based Testing for Robotic Wheelchair Tracking
Software System
Dayang N. A. Jawawi1, Rooster Tumeng1, M. Irsyad Kamil R.1, Amirul Danish Misri1, Rosbi Mamat2,
Shahliza Abdul Halim1, Raja Zahilah1, Mohamad Noor Hakim Mohamad3

1 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
2 School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,

Malaysia
3 Hospital Sultanah Aminah, Jalan Persiaran Abu Bakar Sultan, 80100 Johor Bahru, Johor, Malaysia

ABSTRACT

Introduction: A robotic wheelchair system enables people with disabilities and elderly people who are
unable to operate traditional wheelchairs to move around. Advances in computer and software
technologies have contributed to the provision of robotic wheelchairs and its tracking system to suit the
needs of the healthcare sector. Developing a quality software system requirements specification and
performing testing on the requirements are critical as the users involve patients who suffer musculoskeletal
disorders. Methods: This research paper presents a robotic wheelchair and its software system requirements;
a testing environment; and a requirements-based testing strategy to ensure the software system comply
with the requirements including the functional and technological constraints of the wheelchair system.
Results: The testing strategy was implemented to calculate Average Percentage of Faults Detected (APFD)
and the result quantify 92.19% APFD rates of fault detection with 92.19%. This result delivers an effectively
improving test coverage. Conclusion: The proposed testing environment and the requirements-based
testing strategy enable requirements testing to be conducted from the very beginning of the software
development life cycle.

Keywords: Robotic wheelchair, Software requirements, Requirements-based testing, Simulation testing environment

Corresponding Author:
Dayang Norhayati Abang Jawawi, PhD
Email: dayang@utm.my
Tel: +607-5538768

INTRODUCTION

A robotic wheelchair (RWC) is a wheeled-motorized
chair, incorporates hardware and software systems
that include its own embedded computer and a
software control system, that is designed for patients
suffering from musculoskeletal disorders (1). There
are many kinds of interfaces used to control robotic
wheelchairs, as highlighted in Kamil et al. (2). Patients
with special needs like those who are diagnosed
with congenital disabilities or mobility impairment
require a non-manual interface driver such as voice
recognition, head gesture, or eye tracking. These
requirements are essential towards the development
of a RWC as it will increase the usability of the
wheelchairs. Besides, the embedded computer in the
RWC allows it to interact with other devices.

A camera connected to Wi-Fi may provide a 24-hour
live streaming for the administrator’s view, which
allows them to monitor their patients. Furthermore,
cameras can also pinpoint a patient’s location based
on the path trajectory made by the patients (3). This
system requirement proves that RWC are able to
contribute more not only to assist patients but also,
monitor them.

Tracking is important in controlling wheelchairs
since it will allow hospital personnel to monitor the
current location of the wheelchair along with the
current condition of patients. The retrieval of
an object’s exact location is effortless as Global
Positioning System (GPS) technology is able to pin
point to a most accurate position. However, in indoor
positioning such as in hospitals, GPS accuracy is
compromised as GPS discovery and positioning
modules are obstructed by walls and ceiling,
consequently, preventing the GPS from transmitting
its location to satellites. In Zhang et al. (4) work’s, it
locates or tracks objects using a Wi-Fi positioning

48

Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346)

Mal J Med Health Sci 17(SUPP13): 47-53, Dec 2021

technique and they proposed a selection method on
access points to improve indoor Wi-Fi positioning
accuracy. Meanwhile, Challa et al. (5) developed and
implemented an indoor positioning system based on
Bluetooth beacons, utilising the trilateration principle
to aid in localization.

During the life cycle of RWC software and system
development, errors may inevitably be introduced
related to the system specification as well as attributed
to human factor errors. Therefore, testing must be
carried out at each stage to reduce error propagation.
While numerous wheelchair systems have been
developed, only a few are functional (6) discuss
verification and validation activities of the system,
especially the software testing. The requirements
specification phase of RWC software development
is critical because it can influence or constrain
the software’s design later. Performing testing on
requirements for RWC is critical as the users involve
patients who suffer musculoskeletal disorders.

Requirements-based testing refers to performing tests
through deriving and executing test cases to ensure
that requirements comply with the software that is
developed (7). Requirements-based testing strategy
allows the integration of testing throughout the early
development life cycle. The strategy focuses on
requirements specification’s defect prevention, which
leads to improving software quality. The purpose of
this article is to propose a requirements-based testing
strategy for verifying RWC software requirements in a
testing simulation environment.

MATERIALS AND METHODS

The system and software requirements
An initial prototype of a robotic wheelchair was
constructed to help our research at Universiti
Teknologi Malaysia (UTM), with the primary goal
of developing a minimal cost and an accessible
system that supports various hardware and software
experimentations (8). In this paper, we extend the
requirements of the system to support Hospital
Sultanah Aminah, Rehabilitation Department’s services.

The RWC is visualized in Figure 1(a) as a block
diagram consisting of a standard manual wheelchair
and an add-on unit equipped with a single-chip
microcontroller labelled the Embedded Processor.
This version of our RWC supports the user interface
and navigation using an Android device, and tracking
and monitoring using a camera. Figure 1(b) shows an
overview of a RWC solution proposed.

Here, we proposed a solution using Bluetooth and
Wi-Fi technologies to fulfil RWC tracking and
navigation requirements. The system’s tracking design
consists of four major components: an embedded
processor/computer for the wheelchair, an Android
device, a server and a monitoring device as shown
in Figure 1(a).

The Android device will be used to communicate
with the RWC embedded computer via a Bluetooth
connection. The communication will involve signals
for navigation and retrieving information of the
wheelchair. In addition, data received by the Android
device will be recorded and uploaded via the
internet to the server. Furthermore, the recorded
data will be retrieved by hospital personnel to be
displayed and for monitoring purposes. Through
harnessing a Bluetooth Low Energy Beacon (BLE
Beacon) technology, the position of the wheelchair
can also be monitored by the hospital personnel.
In addition, a live streaming feed provided by a
camera attached to the wheelchair will also help
in providing a rich visual information of the
wheelchair’s conditions or operations. The feed
also helps the personnel in identifying the condition
of patients. The RWC will automatically send a

Figure 1 : The proposed RWC System. (a) The RWC block
diagram, (b) The RWC tracking system.

49Mal J Med Health Sci 17(SUPP13): 47-53, Dec 2021

notification to the tracking system whenever the
RWC encounters any errors.

In terms of artificial intelligence (AI) implementation,
Google Cloud Vision API will be used to recognise
the text from the frames of the streaming video
(camera). The result and data of the recognition will
be used by the system to process to obtain the
coordinate and determine the current location of
the wheelchair. The result of the data processed, the
camera system will save the data to the database.
The tracking system will receive the stream of the
latest coordinate and location of the wheelchair to
be displayed together with the frame of the video
stream that has been sent through the web-socket
by the camera system.

The software requirement documentation
In real world scenarios, software requirements are
often captured and structured in natural language
that aid in understanding but these could result in
inconsistencies. High-level requirements are presented
in the form of natural language that are prone
to issues of incompleteness, inconsistencies, and
difficulty of interpretation. In our works, there are four
high-level requirements.

I. This system must be able to control wheelchair
 navigation.
II. The system must be able to avoid obstacles found in
 the path.
III. The system must be able to monitor the position of
 the wheelchair.
IV. The system should be able to display the current live
 video monitoring

Towards designing the RWC implementation, high-
level requirements must be refined further with more
details into low-level requirements. An instance of
refined low-level requirement for the first requirement
that could be transformed into formal specification
is specified in Table I. The pre-condition for the
requirement is that the system is already connected
to the RWC embedded software. From this low-
level requirement, the control behaviour of the RWC
system could be designed. In ensuring that the RWC
tracking system requirements are met, low-level
requirements could be used to specify test cases,
which could then be used to test whether the
design is in compliance with the requirements.

The testing simulation environment
This section describes how a simulation environment
works to represent the RWC requirements, described
in the actual RWC as discussed in the previous
section. A major difference in this simulation

environment is that the camera is not attached to
the RWC due to the small size of the developed
model. Instead, a camera will be used as a computer
vision processing to obtain the position of the
RWC, which acts as a BLE Beacon in the real
implementation.

ID Description

1.1 The patient selects navigation mode.

If the patient selects ‘Manual Navigation’, refer to
alternative flow (a. Manual Navigation). If the patient
selects ‘Semi Auto Navigation’, refer to alternative flow
(b. Semi Auto Navigation).

Alternative Flow (a.) Manual Navigation :
 (i.) The patient selects navigation mode’.
 (ii.) The patient controls the wheelchair.

Alternative Flow (b.) Semi Auto Navigation :
 (i.) The patient locates the current position.
 (ii.) The patient selects destination.
 (iii.) The patient presses start.

1.3 The system will retrieve path movement.

1.4 The system saves the generated path movement.

Table I : Low-level requirements for ID1 Control Navigation
requirement.

In this simulation prototype model, a mobile robot,
equipped with two motors represents the implementation
of a RWC. The system architecture of the simulation
prototype is described in Figure 2 together with a
hospital plan model where the simulation runs. The
four layers of the system architecture are depicted
in Figure 2(a), namely monitoring, interface,
middleware, and wheelchair. The user interface is
a mobile application that assists users by displaying
context-sensitive accessibility resources based on
their displacements. Furthermore, users control their
wheelchair via mobile application. The application
is connected to the wheelchair via Bluetooth. Signals
emitted and received are saved in a text log, which
will assist in testing later. For the wheelchair, there
are three main components comprising DC motors,
infrared sensors, and limit switches. DC motors and
wheels move the robot while infrared sensors and
limit switches are both used to detect obstacles near
the wheelchair. The function of the infrared sensor
is to sense any obstacles within its surrounding.
Meanwhile, the limit switch assists in collision
detection with obstacles. The sensors are triggered
upon object detection in front of the robot. The robot
will consequently stop and maintain an idle state
regardless of the user’s commands.

Mal J Med Health Sci 17(SUPP13): 47-53, Dec 202150

Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346)

In the RWC prototype, an Arduino microcontroller
is used as the embedded computer. It is designed
to control the directions and speeds of the RWC by
simply receiving input commands via the Bluetooth
module from the user interface. The prototype is
also designed to first check obstacles. If there are no
obstacles, the command will be accepted and the
RWC will run according to the command.

As for the mobile controller, the purpose of the
mobile application is to allow users to control the RWC
prototype from their own mobile phones via
Bluetooth. The system requires a camera and an
internet connection to provide live streaming and
broadcasting purposes. The camera is equipped with
a camera software to recognize robots and their
respective plate numbers. The mobile controller
controls the robot movements while the camera feed
tracks the robot’s movements. The camera is mounted
on a tripod stand to track all of the robot’s movements
as shown in Figure 2(b). A program coded in Python
tracks the robot’s movements by marking them with
a frame. Besides tracking the robot, the program is
also able to identify the location of multiple robots
along with their respective robot IDs. This function
aims to benefit users for the real implementation as it
will allow medical personnel to track all wheelchairs
in the hospital.

RESULTS

In this section, the proposed work revolves around
deriving test cases and testing the requirements of
the implemented requirements in the RWC simulation
environment to improve software quality via improving
fault detection.

The proposed testing strategy is a new technique
of prioritizing test cases based on improved string
distance through considering requirements priority
weight. A complete illustration of the testing strategy
is shown in Figure 3. It is aim to assign weights to
requirement priorities such as weights assigned
by developers and managers. As the wheelchair is
still undergoing an active development phase at
UTM lab, customer priority is omitted in this study.
The improved string distance is based on multiplication
of Smith Waterman (9) string distance and average
requirement priority weight.

Figure 2 : System architecture and prototype environment
model. (a) An overview of system architecture, (b) The model
of built hospital floor plan.

Figure 3 : Requirements-based testing strategy.

Based on Figure 3, the testing strategy comprises six
steps. The first step concerns averaging requirement
priority weights from developer and manager. The
second step involves calculating test cases weights
via Smith Waterman string distance. Eq. (1) expresses
matrix filling scoring that is contained in Smith
Waterman string distance. Eq. (2) will result in
unnormalized Smith Waterman distance value,
unnormalisedSW.

Score(i,j) = Max{Score(i-1,j)- P, Score(i,j-1) - P, Score(i-1,j-1)+ cost (1)

where,
Score(i-1,j) is the scoring matrix to be filled;
i,j are matrix’s indices;
cost comprises three preset values;
 0 if T1.length() < T1 [i] T1 [i] < 0, T2.length() < 1
 if character at index
 else -2.0
P is a penalty for a gap, set at 0.5.

Mal J Med Health Sci 17(SUPP13): 47-53, Dec 2021 51

APFD = 1 - + (4)

where,
TF1 is the first index of fault revealing test case in i,
n is the number of test cases,
m is the number of mutants or seeded faults.

Tracking system prototype was used for evaluation
in this study. For the system, a manual test case
generation was designed based on use cases. Results
show 32 test cases were generated for three use
cases of the prototype. All 32 test cases are extracted
from the tracking system requirement. An example
on a test case extracted can be referred to Table II.
For validation, two versions of the prototype were
created. A unique fault was seeded into each of
the prototype versions. In version 1, there are nine
faults revealing test cases. Meanwhile, in version 2,
there are also coincidentally nine faults revealing
test cases.

DISCUSSION

In overall, 32 test cases were created from the
RWC Tracking prototype. The initial test suite,
T

0
 holds the test cases, that is not sequenced in any

specific orderings. In each version, one fault that
is unique was seeded. The T

0
 is then executed

using CSA. In total, 32 nests were produced upon
subjecting T

0
 to CSA. Each nest comprises 19

CSA-ordered test cases. The 19 test cases ordering
based on CSA are then re-ordered based on
requirement priorities and the ordering result are
shown in Table II along with APFD.

Underlined test cases in Table II signify first test
cases that identify seeded faults. Since there are
two seeded faults, there are two underlined test
cases. APFD of the three nests are shown in Table II.
Based on results glanced in Table III, out of 32 test
cases – only 19 test cases are selected as best
solutions while remaining 13 test cases have been
eliminated.

APFD in Table II indicate that prioritized test
cases with improved Smith Waterman distance
and requirement priorities utilizing CSA algorithm
performed with evident efficiency. Out of the three
nests, Nest 3 exhibits the highest APFD score. This
hints that such a nest yields the best ordering
of test cases. From the results, it is safe to assume
that Nest 3 is chosen as the most ideal set of
CSA-prioritized test cases, TCSA = {T18, T9, T12, T6, T25,
T5, T21, T17, T6, T8, T31, T7, T2, T19, T14, T29, T20,
T10, T4}.

SW(T1,T2) = () x 100 (2)

where,
SW(T1,T2) is Smith Waterman distance computed
 between test cases T

1
 and T

2
,

unnormalizedSW is un-normalized value of Smith
 Waterman distance,
maxScore is maximum edit score between T

1

 and T
2
,

The implementation of Smith Waterman string
distance utilizes an open source library developed
by Chapman (10), known as Simmetrics in Java platform.

The third step involves simple multiplication of
requirement priority and Smith Waterman distance
which yields the proposed improved Smith Waterman
distance. The fourth step, meanwhile, involves
prioritizing the test cases through utilizing Cuckoo
Search Algorithm (CSA). The CSA algorithm is to
mimic parasitic behavior of certain Cuckoo bird
species that seek to lay their own eggs on host nests.

unnormalizedSW
maxScore

Figure 4 : Cuckoo search algorithm.

Figure 4 outlines CSA pseudo code based on Dhareula
and Ganpati work (11).

Referring to Figure 4, the objective function Ledru
et al. (2012) (12) of this CSA, as expressed in Eq. (3),
is to keep the sum of largest distance difference, Diff,
of current best test case and requirement priority,
against current poor test case and requirement priority,
i.e. test case with the lowest current weight as the
current best solution using Eq. (3).

ObjectiveFunction(T(i,j)) = ∑i=1) Diff [(Ti,j) - (T(poortc_i ,poortcj))] (3)

where i=1,…,n
 j=1,…,n and i≠j

The fifth step will be to visualize the prioritized test
cases. The test cases are ranked according to the CSA
search algorithm’s best solution output. Finally, the
Average Percentage of Faults Detected (APFD) of the
prioritized test cases is calculated. The equation of
APFD is shown in Eq. (4).

n

TF
1
+TF

2
+TF

3
+....+TF

m

nm
1
2n

Mal J Med Health Sci 17(SUPP13): 47-53, Dec 202152

Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346)

desirable way to discover software problems as early
on in the requirements engineering process. In this
sense, a systematic early requirements-based testing
is a critical step towards establishing a quality software
system for robotic wheelchairs.

ACKNOWLEDGEMENT

The authors wish to acknowledge Universiti Teknologi
Malaysia for UTM-TDR Grant Vot No. 06G23 and
Ministry of Higher Education (MOHE), Grant Vot
No. 5F117, which have made this research possible.
The authors would also like thank members of
Software Engineering Research Group for the
continuous support and inputs provided for this
research.

REFERENCES

1. Voznenko, Timofei I., Eugene V. Chepin, and Gleb

A. Urvanov. (2018). The Control System based on
Extended BCI for a Robotic Wheelchair. Procedia
Computer Science, 123: 522-527.

2. Kamil, R. M., Jawawi, D. N. A., Mamat, R., and
Jamal, N. N. (2020). Indoor Smart Wheelchair:
Systematic Mapping. IOP Conference Series:
Materials Science and Engineering, 864(1).

3. Ciuccarelli, L., Freddi, A., Iarlori, S., Longhi, S.,
Monteriù, A., Ortenzi, D., and Proietti Pagnotta,
D. (2019). Architecture for Cooperative Interacting
Robotic Systems Towards Assisted Living: A

Table II : Example of Extracted Dataset from Requirement

SWS R1: Control Navigation:: Manage Control

Requirement: User select navigation mode to manoeuvre a wheelchair

Test Case ID# Bluetooth Battery IR Sensor Limit Switch Right Motor Left Motor

TC001 Connected Available On On On On

TC002 Connected Unavailable Off Off Off Off

TC003 Disconnected Available On On On On

TC004 Disconnected Unavailable Off Off Off Off

Table III : Results of RWC Tracking System

TFi 1 2 3 4 5 6 7 8 9 10 APFD

Nest 1 = [T18, T19, T12, T23, T17, T21, T4, T1, T7, T31] 0.8438

Nest 2 = [T16, T5, T13 T1, T21 T4, T22, T14, T20, T7] 0.7813

Nest 3 = [T18, T9 T12 T6 T25 T5 T21 T17 T16 T8] 0.9219

The seeded fault 1, F1, can be detected by nine
fault revealing test cases, TF1 = {T24, T25, T26, T27,
T28, T29, T30, T31, T32}. The first TF1 that reveals
fault in CSAordering is at index 5, which is test case T25.
Similarly, seeded fault 2, F2, can be detected by nine
fault revealing test cases, TF2 = {T15, T16, T17, T18,
T19, T20, T21, T22, T23}. The first TF2 in CSAordering
that reveals fault is at index 1, which is test case T18.
From these TF1 and TF2 values, APFD is computed,
yielding a value of 92.19%. The 92.19% reflects the
rate of fault detection per percentage of test suite
execution TCSA prioritized test cases. This testing
strategy provides quantitative tests within the proposed
six steps, ensuring that testing is being adequately
performed during the simulation testing.

CONCLUSION

This paper provides a robotic wheelchair system
requirements, describes a testing simulation
environment to implement the functionality of the
requirements and proposes a requirements-based testing
strategy to quantify the quality of faults detected based
on software requirements based on the environment.
Finally, the testing strategy was implemented to
calculate APFD and quantify the rates of fault detection
based on the requirements and prioritized test cases. It
delivers maximum coverage with a minimum number of
test cases while also effectively improving test coverage.
The testing simulation environment and requirements-
based testing strategy proposed in this paper is a

Mal J Med Health Sci 17(SUPP13): 47-53, Dec 2021 53

Preliminary Study (A. Leone, A. Caroppo, G.
Rescio, G. Diraco, and P. Siciliano (eds.); Vol. 544,
pp. 471–486). Springer International Publishing.

4. Zhang, W., Yu, K., Wang, W., and Li, X. (2020).
A Self-Adaptive AP Selection Algorithm Based
on Multiobjective Optimization for Indoor WiFi
Positioning. IEEE Internet of Things Journal, 8(3),
1406–1416.

5. Challa, N. S. R., Kesari, P., Ammana, S. R.,
Katukojwala, S., and Achanta, D. S. (2019).
Design and implementation of bluetooth-beacon
based indoor positioning system. 2019 5th IEEE
International WIE Conference on Electrical and
Computer Engineering, WIECON-ECE 2019 -
Proceedings, Ld 33, 2019–2022.

6. Boucher, P, Atrash, A, Kelouwani, S. 2013. Design
and validation of an intelligent wheelchair towards
a clinically functional outcome. J Neuroeng
Rehabil 10(1): 58.

7. Sommerville, I. (2011) Software Engineering. 9th
ed. Boston: Pearson.

8. Jawawi D. N. A., Sabil S., Mamat R., Mohd Zaki
M. Z., Talab M. A. S., Mohamad R., Hamdan
N. M. & Kamal K. 2011. A Robotic Wheelchair
Component-Based Software Development, Mobile
Robots – Control Architectures, Bio-Interfacing,
Navigation, Multi Robot Motion Planning and
Operator Training, Book 2, Intech Open Access
Publisher. ISBN 978-953-307-842-7, pp. 102-126.

9. Smith, T. F., and Waterman, M. S. (1981).
Identification of common molecular subsequences.
Journal of molecular biology, 147(1): 195-197.

10. Chapman, S. (2005) SimMetrics-open source
similarity measure library. Retrieved Feb 01, 2021,
from http://sourceforge.net/projects/simmetrics/.

11. Dhareula, A. and Ganpati, P. (2019).Cuckoo
Search Algorithm for Test Case Prioritization in
Regression Testing. International Journal of Recent
Technology and Engineering, 8(3): 6004-6009.

12. Ledru, Y., Petrenko, A., Boroday, S., and Mandran,
N. (2012). Prioritizing test cases with string
distances. Autom Softw Eng, 19: 69-95.

