
Mal J Med Health Sci 18(6): 1-4, Nov 2022 1

Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346)

Editorial

Down syndrome (DS) is a chromosomal disorder that 
occurs at a rate of 1 in every 1000 live births in all 
ethnic groups (1). In Malaysia, the incidence of DS is 
one in 950 live births (2). Individuals with DS have an 
extra chromosome 21, the most prevalent genetic cause 
of intellectual disability and characterised by various 
dysfunctions in neurodevelopment, growth, and cognitive 
and psychomotor impairments. While intellectual 
disability, hypotonia and craniofacial dysmorphism 
are the well-recognised cardinal phenotypes of Down 
syndrome, the genetic disorder is also burdened with a 
broad spectrum of co-morbidities such as accelerated 
ageing, early-onset Alzheimer’s disease, leukaemia, 
heart defect, gastrointestinal disorders and as much as 
80 more different clinical manifestations throughout all 
stages of their life (3). 
  
Learning disability is the hallmark of DS and is usually 
due to delayed cognitive development during early 
infancy. The severity of the learning disability varies 
among DS individuals, with an IQ score ranging from 
30 to 70 with an average score of 50  (4,5). Their IQ 
declines with age (6,7) due to accelerated ageing (8,9). 
Learning, memory and language appear to be affected 
significantly in individuals with DS, where learning 
disabilities affect long-term and short-term memory 
formation (10,11). To date, several hypotheses have been 
proposed to explain the DS phenotype, including gene 
dosage imbalance (3,12), the amplified developmental 
instability hypothesis (13), and the Down syndrome 
critical region (DSCR) hypothesis (14). However, 
none of the hypotheses was fully proven to cause the 
neuropathologies seen in DS, especially those that led 
to intellectual disabilities and accelerated cognitive 
decline. 

Morphologically, the DS brain has a reduction in 
brain weight and brain volume (15). Newborn infants 
diagnosed with DS have reduced volume in several 
brain regions, such as the prefrontal cortex, amygdala, 
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cerebellum, and brain stem (16). The neuroanatomic 
changes in the DS brain suggested that it was caused 
by defective neurogenesis during brain development. 
Analysis of the dentate gyrus, hippocampus and 
parahippocampal gyrus of foetuses with DS showed 
that the proportion of neuronal populations was less 
than the control foetuses (17). In addition, the precursor 
cell for cerebellar neurons originating from the external 
granular layer and ventricular zone showed impaired 
proliferation (18). A study performed on neurospheres 
derived from the subventricular zone of an adult Ts1Cje 
(a mouse model for DS) mouse brain also demonstrated 
that the numbers of the neurone were reduced by 
approximately 56% (19)  or with smaller diameter (20)  
compared to sex-matched disomic littermate controls. 
These findings indicated that the neuronal loss in the 
DS brain is associated with proliferation deficits and 
apoptosis of neural progenitor cells (NPCs), leading to 
reduced neurogenesis (21).

The number of astrocytes was increased in human 
foetuses with DS. Immunohistochemical staining of 
the frontal lobe of human foetuses DS brain showed 
increased GFAP-positive cells compared to the age-
matched controls (22). The finding was consistent 
with a previous study on both human foetuses and 
Ts65Dn mouse brains for DS (17,23). A study by Chen 
and colleagues, DS astroglia, introduced a negative 
impact on neurogenesis, where it caused toxicity to 
the neurones and induced neuronal cell death (24). 
Although gliogenic shift has a toxic effect on the DS 
brain, overall, the aetiology and consequences of 
neurogenic-to-gliogenic shift where the NPCs tend to 
differentiate into glial cells than neurons in the DS brain 
remain understudied, especially in the early stage of 
brain development. The neurogenic-to-gliogenic shift 
causes neurone-to-astrocyte ratio imbalance in DS, 
leading to insufficient or lesser neurones to begin within 
a somewhat more hostile environment comprising more 
reactive astrocytes and microglia.
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The neurogenic-to-gliogenic shift in DS is characterised 
by the preferential acquisition of astroglial cell fate by 
NPCs. Increased astroglial cell fate commitment in DS 
is accompanied by astrogliosis, reduced neurogenesis, 
abnormal oligodendrocyte differentiation, and 
hypomyelination (21,25). The number of astrocytes is 
increased in various mouse models as well as in human 
foetuses with DS (17,22). Astrocytes in DS are not only 
more proliferative and abundant, but they also display 
altered processes (26). Increased astrocyte reactiveness 
and activity were observed in DS-iPSC-derived astrocytes 
as determined by increased spontaneous calcium 
fluctuations that impede neuronal cell excitability (27). 
In addition, increased reactive oxygen species (ROS) 
were found in DS astrocytes, and the DS astrocytic 
conditioned media caused neurotoxicity, impaired ion 
channel maturation and synaptic development (24). 
Hyperactivation of the Akt/mTOR signalling pathway 
in both DS astrocytes and neurones were observed and 
potentially contributed to neuronal abnormalities and 
cell-autonomous dysfunctions (28). 

In the frontal cortex of DS children and young adults, 
microglia were found to have a higher microglial soma 
size-to-process length ratio and appeared rod-like 
in shape (29). The morphology of microglia evolved 
over the lifespan of DS individuals as determined 
by the appearance of the cell and the coincidental 
dysregulation of various cytokines (29). The findings of 
an early and evolving neuroinflammatory phenotype 
across Down syndrome’s lifespan are potentially 
relevant to understanding Alzheimer’s disease onset 
and progression in this population. Gain-of-function of 
a trisomy 21 gene known as Usp25, a deubiquitinating 
enzyme, caused microglial activation and led to synaptic 
and cognitive deficits in 5XFAD mice, a model for AD. 
When Usp25 was ablated, reduced neuroinflammation 
and improved synaptic and cognitive function were 
observed in the mouse model (30). Similarly, activated 
microglia with increased pro-inflammatory cytokines 
and altered interferon signalling were documented 
in the hippocampus of the Dp(16) mouse model for 
DS and DS individuals (31). The observations were 
characterised by decreased spine density and reduced 
neuronal activity, and neuropathological phenotypes 
were reversed when defective microglia were treated 
with anti-inflammatory drugs (31). Taken together, both 
astrocytes and microglia are equally affected by trisomy 
21. Their roles in neuroinflammation and the regulation 
of dendritogenesis, neuritogenesis and synaptogenesis in 
the nervous system suggest that astrocytic and microglial 
dysfunction contributes to cognitive impairment in DS.

Pro-inflammatory cytokines, such as IL-6, TNF-alpha, 
and TGF-beta, were at least 2-fold higher in autopsied 
human DS brain tissues (<40 years old) when compared 
to age-matched controls (32). These cytokines are well-
known activators of the JAK-STAT signalling pathway, 

a neuroinflammation regulatory pathway mediated by 
upstream interferons or interferons receptors. The extra 
copy of the IFN receptor and the elevation of IFN level 
have been postulated to sensitise the cells to interferon 
interaction and lead to activation of the JAK-STAT 
signalling pathway in astrocyte as well as microglia (33-
35), turning them from the resting into the reactive form. 
Activation of glial cells could lead to neuroinflammation 
via the release of nitric oxide (NO) (36,37). The gene 
expression level of inducible nitric oxide synthase (iNOS) 
that stimulates NO generation was higher in DS astroglia 
than in control astroglia (24). In addition, increased ROS 
and tau hyperphosphorylation were observed in primary 
cultures of hippocampal neurons and astrocytes derived 
from Ts1Cje, a mouse model for DS (38). Increased 
ROS was accompanied by mitochondrial dysfunction in 
the DS brain, such as morphological defects (damaged 
cristae, enlarged size, reduced volume), impaired 
biogenesis and dynamics (reduced mass, reduced 
fusion, increased fission, hyperfused network) and 
perturbed metabolisms (increased apoptosis, reduced 
electron chain activity, reduced respiration, oxidative 
phosphorylation, reduced ATP production, reduced 
membrane potential and increased ROS) (Tan et al., 
unpublished). Taken together, the DS brain is constantly 
placed in a greater neuroinflammatory environment 
due to increased gliosis compared to the control brain. 
It remains hard to predict whether the DS brain suffers 
from an intrinsic neuroinflammation condition or merely 
fails to adapt to stress due to dysfunctional resilience 
mechanisms.  

A multifaceted approach is a must to understand the 
neurogenic-to-gliogenic shift and the reactivity of 
both astrocytes and microglia in the DS brain. Early 
neuromodulation of neural progenitors’ fate would 
help revert the neurone-to-astrocyte imbalance and 
potentially mitigate neuroinflammation in the brain. 
A JAK1 and JAK2 inhibitor, ruxolitinib, was recently 
repurposed to suppress the JAK-STAT pathway in 
mice during gestational development (39). Pups from 
the treated pregnant mice were significantly less 
anxious and performed better in spatial and long-term 
memory tests suggesting that early modulation during 
pregnancy effectively improved intellectual capabilities. 
Ruxolitinib is the first anti-cancer drug to improve 
neurogenesis; such observation is merely the tip of 
the iceberg. The study has opened the pandora box to 
various possibilities of transplacental pharmacotherapy 
for early neuromodulation that may have a significant 
outcome for the DS community. While more thorough 
investigations must be performed to evaluate the daring 
strategy, DS individuals deserve more than symptomatic 
treatments or rehabilitation for an improved quality 
of life. They deserve a potential cure with permanent 
alteration to improve their intellects, quality of life, build 
a happy family and capability to contribute to society 
and nation. 
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