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ABSTRACT

Bone is a highly dynamic tissue that constantly remodels throughout life. Bone damage caused by surgical proce-
dures or trauma can be repaired using a variety of mechanisms that vary depending on the level of immobilization, 
the degree of trauma, and the ongoing biological processes. This is related to the process of endochondral and in-
tramembranous ossification that will occur to regenerate fractured bone. During human development, most of the 
human skeleton is formed through endochondral ossification. The majority of craniofacial bone is formed through 
intramembranous ossification. It is known that endochondral ossification occurs during the development of the 
mandibular column, skull base, and temporal bone. Although endochondral ossification is limited to the previously 
mentioned regions of the craniofacial skeleton, it is the original pathway in the growth of the human face and skull. 
Furthermore, trauma to the craniofacial bone heals similarly to that of the long bone skeleton. Endochondral ossifi-
cation may be found in the healing of craniofacial fractures depending on the type and location of the defect as well 
as the mechanical environment. Many aspects of the healing cascade, such as bone molecules, cells, and events, 
have been identified, but complex interactions and processes remain unknown. This review examines endochondral 
ossification avenues, the current state-of-the-art in critical size defect reconstruction, challenges in implementing 
current knowledge, and the future. give insight into the future of translational research from the bench to the bedside.
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INTRODUCTION

Defects in the alveolar bone caused by tooth extraction, 
resulting in a horizontal defect larger than the vertical 
defect seen on radiographs. The defect occurs for 6-12 
months in the healing period, if the condition is not 
treated, the alveolar bone will lose its volume by 40%-
60% of the ridge volume gradually over a period of 3 
years. These dimensional changes occur during the first 
three months and can last for up to five years, with an 
additional 11% occurring over the next five years. (1,2,3)
A critical size defect (CSD) is a short defect that cannot be 
bridged spontaneously, resulting in non-union. Although 
there are numerous bone reconstruction techniques, 
each has its own set of indications and limitations. 
Methods that have been established include distraction 
osteogenesis or bone graft, which includes autologous 

bone graft, bone marrow aspiration, allografts, and bone 
substitution or growth factor. (4,5)

In the surface of damage, bone has its own repair 
mechanism. The phases of inflammation, repair, and 
remodeling all play important roles in post-traumatic 
bone repair. These repair phases can be efficient in 
general, but 10% of bone regeneration due to fracture 
or trauma has delayed or failed bone union(6,7). Bone 
healing, however, can occur through two repair patterns. 
First, intraosseous osteoblasts and osteoclasts mediate 
direct contact repair, also known as primary ossification. 
Primary ossification occurs at the fracture site, resulting 
in rigid stability and a 0.1 mm space between bones. 
This flaw can be discovered following minor trauma, 
open reduction, and internal fixation of fractures like 
mandibular ramus fractures (8,9). The second type of 
ossification is secondary ossification, which is usually 
mediated by the endoperiosteal layer and/or marrow 
tissue. Callus formation occurs during the healing of 
displaced fractures without surgical intervention and 
treatment with mandibulomaxillary fixation.(9,10).
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Intramembranous ossification
Intramembranous ossification refers to the formation of 
bone tissue directly on top of mesenchymal tissue (rather 
than on cartilage as in endochondral ossification). This 
happens during fracture healing and the early stages of 
skull formation. This procedure is also responsible for 
jaw and collarbone shaping (11). Mesenchymal stem 
cells (MSCs) in bone fracture mesenchyme or medullary 
cavity initiate intramembranous bone repair. A few 
MSCs replicate and form a cell cluster (12).  Once 
formed, the MSC within it ceases to replicate. MSCs 
undergo morphological changes as they mature into 
osteoprogenitor cells, with the cell body becoming 
larger and rounder and the long and thin cell processes 
disappearing. Golgi apparatus and endoplasmic 
reticulum expansion. To become osteoblasts, 
osteoprogenitor cells undergo a morphological process 
that causes their shape to become more columnar. The 
number of Golgi apparatus and endoplasmic reticulum 
is increasing. Type-I collagen is found in the extracellular 
matrix produced by osteoblasts (osteoids). The osteoid’s 
osteoblasts fuse to form an osteocyte. Mineralization 
occurs, producing bone tissue and spicules. Osteoid 
secretion causes spicules to grow in size and join 
together to form trabeculae. The trabeculae become 
interconnected as the spicules continue to grow, 
resulting in the formation of woven bone (11). The initial 
trabecular tissue is also referred to as primary spongiosa. 
The periosteum then forms around the trabeculae. 
Periosteal osteogenic cells promote appositional growth 
and bone formation. Finally, lamellar bone replaces 
woven bone (13,14,15). 

According to Runyan and Gabrick, a study using a rabbit 
mandibular fracture model revealed that in the absence 
of rigid mandibular fixation, fracture healing had several 
histologic similarities to long bone fractures (16).  Over 
the next two weeks, this callus is gradually replaced with 
trabecular bone and completely bridged with the new 
neovascular tract and the Haversian system (17,18,19). 
Paccione and coworkers, In a rat mandibular fracture 
model, the presence of islands of rudimentary cartilage 
matrix formation, vascular growth, osteoblast activation, 
mineralization, and lamellar bone formation resembled 
secondary ossification or endochondral ossification.

The healing process is divided into secondary 
ossification stages. Secondary ossification involves 
the formation of bone via both direct and indirect 
endochondral and intramembranous pathways, as well 
as the progression of inflammation, callus formation, 
and remodeling. The goal of this intricate process is 
to gradually increase the mechanical stability of the 
fracture site by gradually replacing fragile tissue with 
more stable tissue, eventually reaching a point where 
further vascular enlargement and mineralization are 
possible. (21,22). The endochondral pathway is a 
logical approach to craniomaxillofacial regeneration. 
This mimics both natural repair mechanisms and bone 
development processes (9).

Inflammation 
Fracture healing starts with an early anabolic phase 
in which inflammation increases the volume of local 
tissue. A hematoma forms at the fracture site, acting 
as a temporary scaffold for the differentiation of host 
cells into fibrous tissue, cartilage, and bone. Hematoma 
formation is the first stage of remodeling, followed by 
acute inflammation (23). Bone fractures disrupt local 
vascularity within bone tissue, as well as on the endosteal 
and periosteal surfaces, bone marrow, and surrounding 
soft tissue. Hematoma formation occurs as a result of 
the activation of the coagulation cascade of plasma 
and platelets exposed to the extravascular environment. 
Neutrophils are the first inflammatory cells to arrive at 
the fracture site within the first 24 hours. Neutrophils 
are involved in the second wave of inflammatory cell 
infiltration to the fracture site, namely monocytes/
macrophages that reside in the periosteum and endosteum 
and then participate in the regulation of fracture healing 
by secreting inflammatory and chemotactic mediators 
(21). The second wave of inflammatory cells to infiltrate 
the fracture site is monocytes/macrophages, which live 
in the periosteum and endosteum and then control 
fracture healing. Neutrophils are also involved in this 
process (24). Among the inflammatory and chemotactic 
mediators secreted by macrophages are tumor necrosis 
factor alpha (TNF-), CCL2, transforming growth factor 
beta (TFG-), bone morphogenetic proteins (BMP), IL-1, 
IL-6, IL-17F, and IL-23 (25 ). These mediators activate 
fibroblasts, mesenchymal stem cells (MSCs), and 
osteoprogenitor cells from the surrounding niche (21, 

Fig.1 : Secondary ossification process (20)
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25).

Osteoprogenitor cells are stimulated to proliferate, 
differentiate, and produce extracellular matrix by 
platelets and macrophages. Events crucial to chondro-
osteogenesis, such as chemotaxis, proliferation, and 
differentiation of mesenchymal and osteoprogenitor 
cells, as well as extracellular matrix ossification, are 
regulated by the TGF-superfamily, which also includes 
BMPs, PDGF, FGF, and IGF. Because of this, initially 
fractured days to weeks after the fracture, the hematoma 
and initial inflammatory reaction that followed vanish, to 
be replaced by granulation tissue rich in mesenchymal 
cells and entrenched in an unorganized extracellular 
collagen matrix. Mechanical stressors such as strain or 
hydrostatic stress also have a significant impact on the 
healing of bone fractures in addition to these cytokinetic 
variables (26). 

Formation of soft callus
Local vascular disruption and reactive contraction of 
arterioles, hypoxic fracture sites, particularly close to 
the fracture gap. Particularly in the more concentrated 
regions of the fracture fissure, low levels of oxygen, 
direct differentiation via the chondrogenic route in 
conjunction with the amount of micromotion, a variety of 
other microenvironmental cues, and macrophage cues. 
After a few weeks, chondrocytes produce cartilage that 
bridges the space between the damaged bone’s ends. 
This cartilage tissue, often referred to as the soft callus, 
works with the surrounding fibrotic tissue to initially 
stabilize the fracture mechanically and act as a scaffold 
for the development of endochondral bone. Associated 
cells and osteoprogenitor cells in the periosteum 
develop into osteoblasts, which systematically 
arrange bone, while new bone development occurs 
via the intramembranous route concurrently with the 
development of the soft callus in an area with increased 
mechanical stability and blood flow. Last but not least, 
the outside of the soft callus is covered with braided 
bone, providing mechanical support and indicating the 
start of mineralization (21). With a progressive healing, 
endothelium and skeletal cells work together to fill the 
space between the broken pieces of bone, forming a soft 
callus in the process. Soft callus then develops into hard 
callus (25).

Formation of hard callus
In soft callus hypertrophy, chondrocytes undergo 
apoptosis, create calcium-based mediators, and 
induce vascular expansion, ultimately releasing the 
extracellular matrix of partially calcified cartilage. This 
process resembles a growth function. The development 
of construction of braided bone on the cartilage scaffold 
and the transformation of osteoprogenitor cells into 
osteoblasts are accompanied by vascular expansion into 
the fracture gap and a corresponding increase in blood 
flow to the fracture site. The creation of firm calluses is 
the term used to describe this stage of fracture healing. 

In the end, the osteoclasts destroy the immature woven 
bone and the matrix, starting a remodeling process that 
eventually rebuilds the characteristics of the Haversian 
system and the osteon structure depending on the 
mechanical forces acting on the bone (21).
 
Remodeling phase
Following these procedures, over the course of several 
months, coordinated osteoblast and osteoclast activity 
starts the bone remodeling phase. Lamellar bone is 
created while callus tissue is reabsorbed. Woven 
bone is replaced by lamellar bone during the osteonal 
remodeling phase of bone remodeling. After the fracture 
has fused with the woven bone, remodeling takes place. 
Then, by osteonal remodeling and surface erosion, 
lamellar bone gradually replaces the woven bone. This 
procedure continues until the bone fully regains its 
previous architecture, including the restoration of the 
medullary canal, which can take anywhere between 
several months and many years (25).

A well-vascularized granulation tissue is produced 
throughout the angiogenesis-driven renewal of the barrier 
membrane and the  osteogenic cells migration from 
the border to the center. The blood clot first organizes, 
then grows vascularly and deposits braided bone, then 
forms lamellar bone, and lastly remodels to resemble 
bone development. Regeneration of mineralized bone 
is also slowed when the expansion of bone marrow into 
bone breakdown is impeded or delayed. Large defects, 
however, only have a central zone of loose, disorganized 
connective tissue where bone formation occurs, 
necessitating the use of extra bone graft material that 
serves as both a source of bone grafting and a scaffold 
for osteoconduction. Chemicals that are osteogenic and 
osteoinductive for the development of flat bones (4,27)
The VEGF pathway related with the creation of 
endochondral bone, in which BMP induces the 
synthesis of VEGF by osteoblasts and osteoblast-like 
cells, has also been discovered. Both of these pathways 
are involved in the early phases of the healing process. 
Growth factors must also be controlled by inhibitor 
molecules, and a variety of BMP antagonists are released 
into the extracellular compartment (noggin, sclerostatin, 
follistatin). Receptor inhibitors of a number of TGF-
superfamily members that have been linked to pseudo-
receptors known as BAMBI are additional inhibitory 
mechanisms (BMP and membrane-bound activin 
inhibitors, and intracellular inhibitors with activation of 
I-Smads, among other mechanisms) (28).

DISCUSSION

Along with the intramembranous pathway, endochondral 
bone formation is a naturally occurring process for 
the development and repair of bone fractures in the 
craniofacial region. For bone regeneration techniques in 
maxillofacial applications, the endochondral ossification 
pathway is a potential choice. It is well known that 
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