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ABSTRACT

Introduction: In vitro cultured Schwann cell has been suggested to adopt a phenotype of undifferentiated  
immature Schwann cells found in vivo during development. However, recent studies indicate that Schwann  
cells undergo cellular reprogramming into the phenotype of repair Schwann cells instead of reverting to  
an immature phenotype after peripheral nerve injury. The study hypothesized that in in vitro culture,  
Schwann cells assume the repair phenotype instead of de-differentiating to immature Schwann cells, similar  
to in vivo nerve injury response. Therefore, this study aimed to characterize the phenotype of cultured  
Schwann cells by examining the expression of classic Schwann markers and transcription factors c-Jun  
and Krox-20. Methods: Schwann cells, isolated from Wistar rat sciatic nerve, were grown in a standard  
Schwann cell growth medium for seven days. Then, cultured Schwann cells were analyzed using  
immunofluorescence analysis for classic Schwann cell markers (neurotrophin receptor p75 (p75NTR) and  
myelin basic protein (MBP)) and the expression profile of transcription factor c-Jun and Krox-20.  
Results: Immunofluorescence analysis revealed that cultured Schwann cells expressed a significantly  
high level of repair phenotype biomarkers (p75NTR and c-Jun) compared to the level of myelinating  
phenotype biomarkers (MBP and Krox-20). Conclusion: Schwann cells reprogram into repair Schwann cells  
instead of de-differentiating to immature Schwann cells in vitro.
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INTRODUCTION

Schwann cells are the primary glial cells in the 
peripheral nervous system (PNS) and play crucial 
roles in maintaining and supporting the functions of  
neurons. Schwann cells regulate neuronal viability 
by secretion of trophic support, axon myelination,  
formation of the node of Ranvier and perineurium, 
and conducting axonal nerve impulse [1]. Schwann  
cells are also involved in the injury response in the  
PNS by phagocytizing the damaged end of injured  
axons and undergoing a rapid proliferation to provide  
a guidance path known as Bungner’s Band to aid in  
axonal regeneration[1].

Schwann cells originate from the neural crest cells  
and later become differentiated into adult  

Schwann cells through two intermediate stages: 
Schwann cell precursors (SCPs) found in early  
embryonic development and immature Schwann cells  
in late embryonic and pre-natal stages. In adult  
peripheral nerves, Schwann cells exist as myelin or 
non-myelin (Remak) Schwann cells. During maturation, 
immature Schwann cells differentiate into pro-myelin 
Schwann cells and differentiate further into mature 
myelinating if the Schwann cells are associated 
with a large diameter axon. On the other hand, 
immature Schwann cells, associated with small axons,  
transform into Remak Schwann cells which do not  
form the myelin sheath [2]. Both mature cells  
undergo drastic cellular and molecular transformations 
following injury, particularly at the distal denervated 
nerve stumps. In several previous studies, mature 
Schwann cells in the distal stump are thought to  
de-differentiate into immature Schwann cells after 
injury and re-differentiate into myelinating and  
non-myelinating Schwann cells after nerve regeneration 
[3–5]. However, recent findings have confirmed 
that mature Schwann cells, either myelinating or 
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Remak Schwann cells, do not revert to the immature  
phenotype following injury. Instead, they transform  
into a de novo phenotype called repair Schwann cells 
[6].

In vivo Schwann cells present distinct phenotypes 
depending on the developmental stages or wound 
repair phases. The phenotypes are characterized by 
unique expression profiles of specific biomarkers  
which correlate with each stage or phase the nerve 
tissues are in [2,7]. In various stages of Schwann 
cells, the expression profiles of Schwann cell-specific  
markers are conflicting but relatively overlapping,  
as shown in in vivo studies. For example, Sox10 is  
the only marker expressed throughout the Schwann  
cell development stages [2,8] while s100β is not  
expressed in Schwann cell precursors [9]. Immature 
Schwann cells and repair Schwann share similar 
biomolecular profiles in which both highly express 
L1, neural cell adhesion molecule (NCAM), p75 
neurotrophin receptor (p75NTR), and glial fibrillary 
acidic protein (GFAP) [7], except that significant 
upregulation of transcription factor c-Jun is detected 
in repair Schwann cells following injury. Furthermore, 
the elevation of c-Jun is exclusively vital in  
Schwann cell reprogramming into repair phenotypes  
post-injury, but c-Jun does not play any significant 
functions during development [10].

Due to the highly plastic nature of Schwan cell 
phenotypes in native tissue, it is imperative to establish 
the accurate phenotypic profiles of in vitro cultured 
Schwann cells to affirm the fidelity and robustness  
of cultured Schwann cells as an experimental model  
for peripheral nerve studies. A previous study by Liu  
et al. has characterized the phenotypes of Schwann 
cells in culture and concluded that in vitro Schwann 
cells assume a state similar to undifferentiated  
immature Schwann cells due to the elevation of  
Sox2, P75NTR, NCAM, GAP43, Oct6, and MPZ 
expression [7]. However, the study did not analyze 
the expression of transcription factor c-Jun, a unique 
regulatory protein in repair Schwann cells. Since 
immature and repair Schwann cells share similar 
biomarker expression profiles except for c-Jun, this  
has raised a question of whether Schwann cells  
exhibit the immature or repair phenotype when grown 
in in vitro culture.
 
In this study, we hypothesize that in in vitro culture, 
Schwann cells assume the repair phenotype similar 
to in vivo Schwann cells in injured nerves instead 
of de-differentiating to immature Schwann cells. 
Therefore, to prove the hypothesis, this study aimed  
to characterize the phenotype of cultured Schwann 
cells by examining the expression of classic Schwann 
markers (MBP and p75NTR) and transcription factors 
c-Jun and Krox-20. We utilized Schwann cell culture 
derived from rat sciatic nerve for experimentation. The 

culture was then analyzed using immunofluorescence 
staining for classic Schwann markers (MBP and p75NTR) 
and transcription factors c-Jun and Krox-20. The  
present study’s findings demonstrated that cultured 
Schwann cells expressed the phenotype of repair 
Schwann cells due to the upregulation of p75NTR  
and c-Jun transcription factor. 

MATERIALS AND METHODS

Isolation and culture of primary Schwann cell
Male Wistar rats aged 9-12 weeks (Laboratory Animal 
Resource Unit, Universiti Kebangsaan Malaysia) 
were used in this project. All usage and handling of  
animals in the study were conducted per the guideline 
and approval by the Universiti Kuala Lumpur Animal 
Ethics Committee (AEC/MESTECH-UNIKL/2020/009). 
Primary Schwann cells were isolated from rat sciatic 
nerves using a previously published protocol [11]. 
Briefly, the sciatic nerve segment was resected 
by bilateral dissection and immersed in ice-cold  
Dulbecco’s modified Eagle’s medium (DMEM) 
D-valine containing 1% penicillin/streptomycin. Under 
a stereomicroscope, the epineurium was carefully 
removed using fine forceps. Then, the epineurium-
free nerve tissue was washed with ice-cold PBS, cut 
into small pieces (approximately 1 mm long) using  
a scalpel, and digested with 0.05% collagenase-A 
(Sigma Aldrich) solution for 1 hour 30 minutes at  
37 °C. The digested nerves were filtered using a  
sterile 40 µm cell strainer into DMEM D-valine 
containing 10% fetal bovine serum (FBS) and were 
then centrifuged at 1500 rpm for 6 minutes. The cell 
pellet was resuspended in Schwann cell growth 
medium containing (DMEM) d-valine supplemented 
with 10% fetal bovine serum (FBS) (Biosera), 1% 
Glutamax (Sigma-Aldrich), 1% penicillin/streptomycin 
(Sigma Aldrich), 0.5% Amphotericin B (Gibco), 1% 
N2 supplement (Gibco), 20 µg/mL bovine pituitary  
extract (BPE) (Sigma-Aldrich) and 5 µM forskolin 
(FSK) (Sigma-Aldrich). The cells will be seeded into a  
poly-L-lysine and laminin pre-coated 6-well plate.  
The cells were cultured in the Schwann cell growth 
medium at 37 °C with 5% CO

2
. The medium was 

changed on day 14 and subsequently replenished  
every 2-3 days to confluency. For experimentation, 
Schwann cells were seeded at 3 x 104 cells per well  
in 24-well cell culture plates. The cells were cultured 
on 10 mm round glass coverslips, precoated with  
poly-L-lysine (Sigma-Aldrich), and incubated for  
seven days in the Schwann cell growth medium at 37 °C 
with 5% CO

2
.

Immunocytochemical labeling of Schwann cells 
Cells were fixed with 4% paraformaldehyde (in PBS)  
and permeabilized with 0.1% Triton X-100. Then,  
cells were blocked with 3% bovine serum albumin 
(BSA) in PBS for 60 minutes at room temperature. Then, 
the samples were incubated at 4°c overnight with 
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primary antibodies and washed three times with PBS 
before incubating with fluorescent-tagged secondary 
antibodies for 90 mins at room temperature. The  
primary antibodies used were anti-MBP (1:200, Santa 
Cruz Biotechnology, sc-271524), polyclonal rabbit 
anti s100β (1;200, Dako, Z0311), anti-p75NTR 
(1:200, Promega, G3231), anti-Krox20 rabbit (1:1000, 
Invitrogen, XC3547114), polyclonal anti-c-Jun  
mouse (1:200, Santa Cruz, sc-166540). The secondary 
antibodies used were DyLight 549-conjugated 
anti-mouse IgG (1:100, Vector Laboratories, cat.  
no. DI-2549), goat anti-rabbit IgG fluorescein (1:100, 
Vector Laboratories Inc, Burlingame, CA, USA, cat. 
no. F1-1000). The primary antibodies were diluted 
in 1% BSA solution, while the secondary antibodies  
were diluted in 1% BSA solution containing 1% goat 
and 1% horse serum. Lastly, Hoechst 33342 (1:200 
in PBS) (Thermo Scientific) was added to stain for  
nuclei for 30 minutes at room temperature and  
washed three times with PBS before imaging. Cells 
were imaged using a Nikon Eclipse Ni fluorescence 
microscope equipped with Lumenera’s Infinity 3 digital 
microscopy camera. 

Quantitative analysis on the expression of the 
biomarkers using Corrected Total Cell Fluorescence 
(CTCF) measurement
Quantitative analysis of the biomarker expression 
was conducted by measuring the Corrected Total Cell 
Fluorescence (CTCF) using ImageJ image processing 
software as previously described [12]. Cells were 
selected individually in an image, and then the  
integrated density, area, and mean background 
fluorescence intensity were measured. The fluorescent 
intensity of each cell was acquired by calculating  
the Corrected Total Cell Fluorescence (CTCF) = 
integrated density – (area of selected cell x mean 
background fluorescence intensity) using Microsoft 
Excel (Microsoft 365 Apps for enterprise). The mean 
background fluorescence intensity was obtained from 
three background areas in an image to normalize  
against autofluorescence. 3 images were acquired  
for each group, with 30-40 cells measured per  
group. 

Statistical analysis
GraphPad Prism (Version 9.0.0) was used for all  
statistical analyses. All data were expressed as  
mean ± S.D from three independent experiments.  
Statistical comparisons were performed by Student  
T-test and one-way ANOVA, with statistical  
significance at p < 0.05.

RESULTS  

Immunofluorescence analysis on the expression of  
MBP and p75NTR in in vitro cultured Schwann cells
The study first characterized the phenotype of  
Schwann cells in in vitro culture by evaluating the 

expression of classic Schwann cell biomarkers MBP 
and p75NTR proteins through immunofluorescence 
analysis. Figure 1 shows representative fluorescent 
micrograph images of Schwann cells in in vitro 
culture, demonstrating positive expressions of MBP  
and p75NTR. p75NTR proteins (Figure 1B) were  
observed to be concentrated at the center mass of  
the cells with light distribution at the periphery. 
On the other hand, MBP (Figure 1D) was observed  
to be confined around the nucleus. Then, the study 
evaluated the level of MBP and p75NTR expressions  
by quantifying the fluorescence intensity. Figure 2 
shows that the expression of p75NTR was significantly 
higher than MBP in cultured Schwann cells (p <0.05). 
The mean CTCF value for p75NTR was measured at 
1593997 ± 308210, which is 227.3% higher than for 
MBP (mean CTCF value = 487018 ± 106342). 

Figure 1 : Representative fluorescence micrographs 
of Schwann cell culture stained for (A) Hoechst;  
(B) p75NTR; (C) Hoechst, (D) MBP after 7 days in  
culture. Scale bar = 100 µm.

Immunofluorescence analysis on the expression of 
transcription factors c-Jun and Krox-20 in in vitro 
cultured Schwann cells
The study also examined the expression level of 
transcription factors, Krox-20 and c-Jun, in in vitro 
cultured Schwann cells. Krox-20 and c-Jun play 
essential roles in regulating the phenotypes of the 
Schwann cell. Krox-20 induces the production of  
myelin basic protein (MBP) and myelin protein 
zero (MPZ)[13], hence promoting myelination [14], 
while c-Jun negatively controls myelination and  
concomitantly enhances repair phenotypes [15]. The 
data shown in Figure 3, demonstrates that positive  
c-Jun and Krox-20 expressions were detected in  
cultured Schwann cells. C-Jun expression was widely 
distributed throughout the cytoplasm and within the 
nucleus (Figure 3B). There was less expression for 
Krox20, with the distribution mainly limited within  
the nucleus (Figure 3C).
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The expression level of c-Jun and Krox-20 in  
Schwann cells was also quantified by measuring 
the fluorescence intensity, as shown in Figure 4. 
The expression of the c-Jun transcription factor was 
significantly different compared to the expression 
of Krox-20 (P = 0.0349). The mean CTCF value of  
c-Jun is 1356796 ± 214674, while the mean CTCF  
value of Krox-20 is 781389 ± 232704. The mean 
expression level of c-Jun is higher by 73.64%  
than that of Krox-20, indicating a significantly 
higher expression of c-Jun expressed than Krox-20  
expression.

DISCUSSION

Immature Schwann cells are prominent during 
development and are the precursor lineage for  
myelin and Remak (non-myelin) Schwann cells 
found in adult peripheral nerves [16]. Following 
injury, mature Schwann cells transform into repair  
phenotype, enhancing pro-regenerative characteristics 
thanks to Schwann cells’ remarkable plasticity 
[17]. The study hypothesized that Schwann cells, 
when in culture, exhibit repair phenotype instead of  
de-differentiating to immature Schwann cells. To test  
the hypothesis, the study first characterized the 
phenotype of Schwann cells in culture by evaluating  
the expression of classic Schwann cell markers. 
Then, we examined the expression profiles of  
transcription factors implicated in the repair  
phenotype modulation.

Our findings demonstrated that in in vitro Schwann  
cells upregulated p75NTR expression, an immature 
Schwann cell biomarker, with concomitant 
downregulation of MBP expression, a myelin protein. 
P75NTR is a biomarker expressed by immature and 
non-myelinating Schwann cells. It is highly expressed 
in the denervated Schwann cells following injury  

Figure 2 : Corrected total cell fluorescence measure-
ment for MBP and P75NTR expression in Schwann  
cells after 7 days in culture. The fluorescence inten-
sity of Schwann cell biomarkers was quantified to  
characterize the phenotype of Schwann cells. The  
mean CTCF value was presented as mean ± SD. (n = 3 
three independent experiments).

Figure 3 : Representative fluorescence micrographs  
of Schwann cell culture stained for (A) Hoechst;  
(B) c-Jun; (C) Krox-20 after 7 days in culture. Scale  
bar = 100 µm.

Figure 4 : Corrected total cell fluorescence measure-
ment for the expression of transcription factor Krox-20  
and c-Jun in Schwann cells after 7 days in culture. 
The fluorescence intensity of Schwann cell biomark-
ers (Krox-20 and c-Jun) was quantified to characterize  
the phenotype of Schwann cells. The mean CTCF  
value was presented as mean ± SD. (n = 3 three  
independent experiments).
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resembles repair Schwann cells in in vivo denervated  
peripheral nerves following injury.
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