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ABSTRACT

Increasing input of endocrine disrupting chemicals (EDCs) has been increasing rapidly nowadays. Various  
wastewater treatment technologies have been studied to remove EDCs in water and wastewater. Due to its  
high oxidation potential and other benefits over other tertiary wastewater treatments, the establishment of  
advanced oxidation processes based on sulfate radicals (SR-AOP) has been of attention in recent years. There  
are numerous activation methods to produce sulfate radicals from peroxymonosulfate (PMS) and  
peroxydisulfate (PDS) such as ultrasound, transition metals, and the use of carbon catalysts. This review  
manuscript focuses to provide the latest overview of different methods of PDS and PMS activation and  
different utilization of this technology focusing on water and wastewater treatment. Besides that, this article  
also focused on the utilization of carbon-based catalysts as a substitute for metal catalysts as an activator in  
the SR-AOP process. This review also aims to discuss the perspectives for the biochar-based catalyst  
application and expand their potential for removing organic pollutants. 
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INTRODUCTION

Nowadays, rapid development and urbanization have 
caused increasing input of organic pollutants such 
as endocrine-disrupting chemicals (EDCs) into the 
environment. These EDCs contributes to diseases and 
dysfunctionality in human and wildlife. EDCs cannot 
be withdrawn from the waters through conventional 
wastewater treatment processes. Therefore, past 
research has studied non-conventional methods for  
the elimination of EDCs from aqueous solutions (1). 
Various wastewater treatment methods have been 
studied for the effective removal of organic pollutants 
which include nanofiltration, photocatalysis, and 
advanced oxidation process (AOP). Among these, 
AOP has gained great interest due to its high potential 
to remove organic pollutants in wastewater. Recent  
studies showed that advanced treatments have been  
used to remove EDCs which is by using sulfate-
radical based oxidation (SR-AOP) technology from 
peroxydisulfate (PDS) and peroxymonosulfate (PMS).  

In comparison, PDS offers a lower cost, is able to  
persist in the water longer, and has higher redox  
potential than PMS (2), making PDS a more feasible 
choice.  

Currently, various methods of activating PDS and 
PMS have been developed which include ultrasound, 
transition metals, carbon catalysts, heat, etc.  Among 
these methods, PDS activation by homogenous/
heterogenous catalysts defined as metal and carbon-
based catalysts have gained interest from researchers. 
However, the durability of PDS activators by utilizing 
metal-based catalysts is argumentative owing to metal 
leaching during the process (3). Therefore, carbon-
based materials have been issued as a positive and 
effective alternative in activating PDS. Recently,  
biochar technology shows promise in reducing  
climate change and refining soil quality, as well 
as lessening waste and generating energy as a  
by product. Biochar has a stronger adsorption  
capacity, larger surface area, or ample surface  
functional groups (SFG), which portrays a new type 
of carbon material with significant implications 
in wastewater treatments (4). Several studies have  
shown the application of biochar in activating  
PDS and PMS to be used in the degradation of  
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aqueous pollutants. Wang et al. described that  
biochar derived from sewage sludge was able to 
activate PMS and was then utilized to degrade triclosan 
in wastewater (5). Several studies discovered that 
the performance of catalytic biochar can be further 
improved with Nitrogen-doping (6). N-doping showed 
the most functional doping to produce active sites on 
biochar for PDS and PMS activation. A study by Zhu  
et al. produced nitrogen-doped biochar (N-doped 
biochar) at various temperatures and observed the 
mechanisms for organic pollutants’ degradation 
(7). Therefore, this article reviewed the research 
development of biochar-based catalyst to activate  
PDS in an advanced oxidation process and its  
mechanism towards the degradation of organic 
pollutants. 

ENDOCRINE DISRUPTING CHEMICALS

Environmental issues are a main global concern.  
Among all issues, water pollution is said to be one  
of the highest menacing sources of environmental 
problems to living health. Water is one of the critical 
essentials for domestic industrial and natural usage.  
Due to the increasing population and industrial sector, 
water quality is deteriorating causing a significant 
consequence to the environment. This led to the  
demand for access to clean water increasing  
significantly (8). Total change in land-based activities 
might be the main source of water pollution in 
river systems. Land-based activities may include 
agriculture and industry, residential development,  
and deforestation (9). Untreated and inadequately 
treated wastewater is one of the main roots of water  
pollution (10). 

The improper discharge of wastewater causes the  
natural water bodies to be contaminated with organic  
and inorganic pollutants (11). These contaminants 
comprise endocrine-disrupting chemicals (EDCs), 
personal care products, heavy metal ions, dyes, 
pharmaceuticals, pesticides,  etcetera (12). These 
compounds are harmful that cause hazardous 
consequences for humans and the environment. 
EDCs can be found in aquatic systems including  
underground water, wastewater, and drinking water 
(13). EDCs defines as exogenous chemicals or  
chemicals mixture that disrupts the endocrine function 
not only in the human body but also wildlife. It 
exists either in synthetic or natural compounds that 
are discharged to the aquatic environment from 
industrial wastewater, livestock wastes, and domestic 
sewage effluents (14). Figure 1 shows an overview of 
human exposure to EDCs. Humans can be exposed 
to EDCs either through natural or synthetic sources. 
The natural source is hormones such as progestogen, 
androgen, estrogen, and etcetera. The excretion of 
these hormones will then be absorbed in the soil and 
influence the composition of groundwater. The exposed  

groundwater will then be processed into drinking water 
in the water treatment plants. However, incomplete 
removal of the EDCs in the groundwater will then be 
passed into the tap water and simultaneously exposed 
to humans after consumption. Meanwhile, synthetic 
sources of EDCs may originate from pesticides, personal 
care products and cosmetics, veterinary and medical 
pharmaceuticals, and plastic products. These sources 
mainly originate from manufacturing and industrial 
effluent. 

Industrial chemicals and pesticides produced from 
industrial effluent can leach into groundwater and soil, 
which later then make their way into the food chain. 
Some products manufactured in the industry such as 
products with fragrances, lotions, cosmetics, household 
chemicals, anti-bacterial soaps, and fabrics treated with 
flame retardants can leach EDCs and are then exposed 
to the consumers (14). Another example of EDC sources 
is processed foods produced in the industry. Materials 
used in processing, manufacturing, transportation, and 
storage contain traces of EDCs which can accumulate 
in processed foods. Besides that, soy-based products 
contain phytoestrogens, which are chemicals produced 
by plants that mimic estrogen hormones which 
if consumed by humans, will disrupt the natural  
hormones in the body (14). Furthermore, household  
dust may also contain EDCs such as flame retardants, 

Figure 1 : Overview of human exposure to EDCs.  
Adapted from  ref. (65).
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Dai et al established MoS2 nanosheets to polyamide 
(PA) NF membrane to create nanochannels and 
hydrophilic surface in the PA rejection layer, to intensify 
the elimination of hydrophobic EDCs from water. 
Their outcomes revealed MoS2 nanosheets enhanced 
EDCs degradation by 6 times larger than conventional 
PA NF membranes (17).  Emek et al examined the 
performance of NF membranes for the degradation 
of EDCs from textile industries’ wastewater sources. 
Their experimental outcomes revealed that 10 out  
of 17 EDCs from textile wastewater sources were 
treated below their detection values limit with  
NF. However, compounds such as naphthalene,  
di-sec-octyl phthalate, and butyl phthalate were not 
efficient to use the NF membrane (18). 

Another wastewater treatment method is photocatalysis. 
This method utilizes the energy produced by light 
and converts it to a higher energy level to drive a 
chemical reaction (19). Previous studies concluded 
that photocatalysts can degrade persistent organic 
compounds with the help of the absorption of light 
in the water (20). Titanium dioxide (TiO

2
) and zinc 

oxide (ZnO) is the most utilized photocatalyst in the 
photocatalysis process. During the process, reactive 
oxygen species (ROS) such as hydroxyl radicals (.OH) 
and superoxide radical anions (.O

2
-) were produced 

when the photoinduced holes and electrons reacted 
with water (H

2
O), oxygen (O

2
), and hydroxyl radicals. 

The removal of persistent organic pollutants then 
occurred to the existence of these ROS (21). Plenty 
of past research has shown significant results by  
utilizing photocatalysts in wastewater treatment. 
A study by Babu et al revealed that 98% of methyl  
orange degradation was achieved by utilizing  
CuO-TiO

2
/rGO catalyst utilizing a UV light source (22). 

Besides that, Alvarez et al showed that degradation  
of amitrole was achieved at 96.90% by using an  
X-Ni catalyst with also utilizing a UV light source (23).  

ADVANCED OXIDATION PROCESS (AOP) 

AOP is based on the in situ generation of strongly  
reactive free radicals species which are able to  
partially or totally oxidize complex organic molecules 
(24). The advanced oxidation process based on the  
production of hydroxyl radicals (.OH) in water 
purification is the most common treatment compared 
to other disinfectant agents such as chlorine, ozone,  
or permanganate (25). The AOP concept later then 
has been widened to the oxidative processes with 
sulfate radicals (SO

4
.-). Hydroxyl radicals are reliable 

in breaking organic compounds as they are high in 
redox potential (2.8 eV) and are non-selective (26).  
Table I showed the oxidation potential of commonly 
used oxidants.

Figure 2 : Common classes of EDCs. Adapted from  
ref. (15).

lead, and polychlorinated biphenyls (PCBs) from 
furniture or weathering construction material (14). 
Figure 2 shows the common classes of EDCs (15). 

WASTEWATER TREATMENT METHODS

Various wastewater treatment methods have been 
investigated by past researchers for the effective  
removal of organic pollutants which include 
nanofiltration, photocatalysis, and advanced oxidation 
process (AOP). 

Nanofiltration (NF) is a pressure-drive membrane 
process using a nanoporous membrane to selectively 
separates contaminates in water (16). NF is a liquid-
separation technology similar to the characteristic 
of reverse osmosis. NF membranes’ pore size ranges  
from 1 to 10 nm, slightly larger than that of reverse 
osmosis membranes (16). NF has the possibility to 
degrade EDCs in wastewater as the size of most  
EDCs is inside the range of NF’s molecular weight  
cut-off (200 – 1000 Da) (17). Figure 3 shows the 
classification of membranes according to different 
particle sizes. 

Figure 3 : Classification of Membranes according to  
particle size. Adapted from ref. (66).



Mal J Med Health Sci 19(SUPP9): 298-307, Aug 2023301

Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346)

Garrido et al stated that ·OH’s reaction with organic 
contaminants leads to the formation of carbon  
radicals (R or R-HO) that can create organic peroxyl 
radical (ROO) with O

2
 (26). These ·OH’s reaction 

causes the generation of more reactive species namely 
hydrogen peroxide, therefore, chemical destruction 
and mineralization of organic compounds then might 
occur (25). Nevertheless, these hydroxyl radicals have 
a limited lifetime, therefore activation is required to 
produce free-radical or non-radical reactive species  
with higher reactivity. Common activation methods 
are by using oxidizing agents (hydrogen peroxide 
and ozone), catalysts, and irradiation (ultrasound or 
ultraviolet light) (25). In UV-based AOP, the most often 
catalyst used to generate these radicals is Titanium 
dioxide (TiO

2
), where TiO

2
 particles produce and  

excite positive holes in the valence band with an  
oxidative capacity and negative electron at the 
conduction band. With the reaction of O

2
., H

2
O, 

and OH- at the surface of TiO2, these holes and  
electrons are able to increase the generation of  
hydroxyl radicals (25).  

In other ways, the utilization of iron as a catalyst  
is also widely studied with O3 and H

2
O

2
 as catalysts 

called as Fenton process that can generate strong 
reactive oxygen species (ROS) including ·OH and  
SO

4
.-. Generally, ·OH is generated through electron 

transfer but it is also can be produced by Fenton 
reagents (Fe2+ and H

2
O

2
). These reagents are added  

to wastewater which then reacts to form hydroxyl 
radicals (27). Operating parameters such as H

2
O

2
 and 

Fe2+ concentrations, reaction temperature, and pH  
value will affect the Fenton process efficiency (27). 
Hence, the optimal molar ratio of hydrogen peroxide 
to ion needs to be determined accordingly to  
minimize unwanted scavenging (25). In wastewater, 

Fe3+ forms iron sludge that requires to be removed 
which leads to an increase in operational cost.  
Deng et al stated that the ·OH generation in the  
Fenton process gives effective results in acidic pH 
conditions but since the optimal pH is 2.8, the 
practice is quite restricted for treating wastewater (25) 
(26). Therefore, catalysts such as Fe(II), Fe(III), Cu(II), 
metal foam-based catalysts, and nano zero-valent  
iron (28) are utilized to replace Fe2+ to overcome this 
limitation (27). Qi et al observed that by utilizing 
CuCo

2
O

4
 nano-catalyst for metacycline degradation, 

the degradation efficiency is 38.4% when the  
dosage is 5.0 mg and increased to 89.1% when the 
dosage is 12.0 mg (29). Besides that, Nasseh et al.  
were able to achieve 84.29% degradation efficiency 
by utilizing 0.1 g/L synthesized FeNi

3
/SiO

2
 magnetic  

nano-catalyst to degrade metronidazole (30). 

Ozonation is another type of AOP, where ozone  
having a 2.07 V oxidation potential can react with 
wastewater to form hydroxyl radicals (27). To enhance 
the degradation efficiency of pollutants, homogenous 
and heterogenous catalysts are introduced in the 
ozonation AOP. Transition metal ions or liquid  
catalysts such as Mn2+, Fe2+, Ni2+, Cd2+, Zn2+, and Ag2+  
are utilized to enhance degradation efficiency by  
exciting ozone to produce higher amounts of hydroxyl 
radicals (27). Oh et al proved that by increasing 
ozone dosage from 3 ppm to 7 ppm, the degradation 
of tetracycline occurs faster at 5 min reaction time, 
the tetracycline concentration was 40 mg/L at 3 ppm 
ozone and 20 mg/L at 7 ppm ozone introduction (31). 
However, ozonation AOP has high manufacturing costs 
and complex equipment. Therefore, it has not been 
used on a large scale although it has a strong oxidizing 
ability and lesser secondary pollution compared to 
other methods (28). Table II shows the mechanisms  
for pollutant removal by different AOP types.

SULFATE-BASED AOP

Currently, the usage of PMS and PDS in the activation 
of ROS has gained interest in water purification (32) (33) 
(34). Although, direct reaction with pollutants occurs 
at a very low rate so activation is required to generate 
sulfate radicals. PDS and PMS are activated to form ROS 
for organic pollutants removal. Between the two, PDS 
holds more advantages due to its lower cost, improved 
stability, and higher redox potential compared to PMS 
(26). PDS is a strong oxidant with a standard oxidation 
potential of 2.01 V. Table III showed the chemical 
properties of PDS and PMS.

Numerous activation methods have been employed 
for the activation of PDS which includes ultraviolet 
(UV) irradiation, heat, elevated pH, transitional  
metals, and carbon-based catalysts which will form 
more powerful sulfate radicals (25). Equation (1)  
showed PDS activated by UV radiation: 

Table I : Oxidation potential of commonly used oxidants 

(25)

Oxidant Oxidant potential (eV)

Fluorine [F
2
] 3.0

Hydroxyl radical [HO·] 2.8

Sulfate radical [SO
4
·] 2.5-3.1

Ozone [O
3
] 2.1

Persulfate [S
2
O

8

2
] 2.1

Peroxymonosulfate [HSO
5

-] 1.8

Hydrogen peroxide [H
2
O

2
] 1.8

Permanganate [MnO
4

-] 1.7

Chlorine dioxide [ClO
2
] 1.5

Chlorine [Cl
2
] 1.4
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 S
2
O

8
2-  → 2SO

4
.-          (1)

Ultraviolet irradiation is considered a productive 
way for the activation of PDS for decomposing the  
organic compounds in water (35). Zhang et al proved 
that the addition of 2 mM of PDS activated by UV 
attained 100% removal of 20 mg/L trimethoprim at 
an absorbed dose of 400 Gy (36). Shah et al revealed 
the degradation of chlorendic acid escalated to 
95% from 82% in the attendance of PMS, showing 

the synergistic effect of hydrogen sulfate and UV 
radiation (37). However, owing to the active species  
interaction, PDS and PMS activation by radiation 
might have a side reaction. Therefore, further research 
should be done to explore the aforementioned  
matter (35). Metal oxide and transition metal can 
be classified into heterogeneous and homogenous  
subject to the existing form of metal oxide and  
transition metals. Amongst the homogenous metal  
oxide and ions, silver ion was demonstrated to be  

Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346) 

Table II : Mechanisms For Pollutant Removal By Different AOP Types (24)

AOP types Oxidant for advanced ox-
idation

Other occurring mechanisms

O
3

OH· Direct O
3
 oxidation

O
3
/H

2
O

2
OH· Direct O

3
 oxidation

O
3
/UV OH· UV photolysis

UV/TiO
2

OH· UV photolysis

UV/H
2
O

2
OH· UV photolysis

H
2
O

2
 oxidation

Fenton reaction OH· Iron coagulation

Iron sludge-induced adsorption

Photo-Fenton reaction OH· Iron coagulation

Iron sludge-induced adsorption

UV photolysis

Ultrasonic irradiation OH· Acoustic cavitation generates transient high temperatures 
(>5000 K) and pressures (>1000 atm), and produce H·and 
HO

2
·, besides OH·

Heat/persulfate SO
4

- Persulfate oxidation

UV/persulfate SO
4

- Persulfate oxidation

UV photolysis

Fe (II)/persulfate SO
4

- Persulfate oxidation

Iron coagulation

Iron sludge-induced oxidation

OH-/persulfate SO
4

-/ OH· Persulfate oxidation

Table III : Chemical properties of PDS and PMS (27)

PDS PMS

Formula S
2
O

8

2
HSO

5
-

Molecular weight (g/mol) 192.12 113.07

Redox potential (V) 2.1 1.8

O-O bond dissociation energy (kJ/mol) 140 140.213

O-O bond length (A) 1.453 1.497
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the most effective for PDS activation, while cobalt 
ion (Co2+) reveal the best-activated conduct for PMS 
(35). Equation (2) showed the activation of PDS by  
transition metals:
   
 S

2
O

8
2- + Mn+  → SO

4
.- + SO

4
2- + Mn+1  (2)

The most commonly studied metals were iron and  
its oxide because of its advantages of being cost-
effective, and non-toxic in contrast to other transition 
metals (35). However, in homogenous systems, the 
limitation is that a high amount of organic pollutants 
in wastewater requires a high amount of metal ions for 
organic pollutant degradation. In return, high amounts  
of metal ions in the effluent existed and thus are 
difficult to be recovered (35). Heterogenous metal-
based activation may overcome this limitation. 
Nevertheless, it depends on the surface properties  
of the material (35). 

Various factors may affect the efficiency of SR-
AOPs, among these, the effect of pH has the highest  
influence on the degradation of organic pollutants (38). 
Increasing the pH of the wastewater to 8-9, sulfate  
radicals are converted to hydroxyl radicals thus  
engaging in the degradation of organic pollutants 
(39). Besides pH, the effect of reaction temperature 
also plays a crucial role in the degradation efficiency 
of organic pollutants in SR-AOP. Zhang et al studied  
the degradation efficiency of Rhodamine B (RhB) at 
various temperatures, with the aid of an Ag@CuO-
activated catalyst. Based on their findings, it is observed 
that at a higher temperature, a higher degradation  
was achieved. The time to achieve 95% degradation  
at 20 oC was 36 min, meanwhile, at 30 oC, 40 oC, 
and 50 oC, the time was 24 min, 19 min, and 15 min 
respectively (40). 

Genc et al evaluated the degradation efficiency 
of pollutants in olive oil mill wastewater with  
microwave-activated persulfate process. At 30 min, 
the removal rate of pollutants was 63.38% under 
optimal conditions of persulfate anion dosage of 
266 g/L, reaction time 23.58 min, initial pH 2, and 
microwave power of 567 W (41). Liu et al studied 
the degradation of RhB dye in wastewater with PMS 
activated by ß-MnO2 and within 5 minutes the  
catalytic system achieved 100% RhB degradation 
(42). Yin et al investigated the degradation of  
Sulfamethoxazole (SMX) in pharmaceutical wastewater 
by PDS with the aid of Fe-based metal-organic 
frameworks (MOF) and achieved a degradation  
rate of 100% within 3 hours of reaction time (43).  

CARBON-BASED CATALYSTS FOR PDS/PMS 
ACTIVATION

An efficient and inexpensive activator to generate  
suitable reactive species is one of the main problems 

in persulfate-based advanced oxidation processes. 
Although the performance of homogeneous or 
heterogeneous catalysts based on transition metals 
has been extensively studied, metal leaching 
of catalysts is generally unavoidable and poses  
additional environmental problems (44) (45) (46). 
Various studies have been issued in recent years on 
the use of carbonaceous materials such as carbon 
nanotubes, graphene, graphene oxide, and activated 
carbon as metal-free persulfate activators (38, 47-
49). Among these, activated carbon derived from 
biomass has emerged as an extensive approach for  
environmental applications (50) (51) (52). This is 
because of its unique properties of having a huge 
specific surface area (SSA) and pore volume, excellent 
thermal and chemical stability, and is also cost-
effective (32). Duan et al suggested that metal-free 
catalysts have shown potential in catalytic superoxide  
activation and oxidation (53). Biochar is a porous 
carbonaceous material produced by decomposing 
biomass feedstock which includes organic waste 
materials such as manures, sewage sludge, algae,  
wood chip, and crop and forest residues (2, 54, 55). 
Li et al synthesized rice straw biochar modified with  
cooper oxide (RSBC-CuO) in activating PDS in removal 
of SMX in pharmaceutical wastewater and within  
30 min, achieved 100% removal efficiency (56). 

The pyrolysis process is the most standard technique 
used in biochar catalyst preparation for catalytic 
degradation. Pyrolysis is carried out at a temperature 
between 300 to 900 °C under oxygen-limited  
conditions (57). Pyrolysis temperature, reaction 
time, and pyrolysis atmosphere are the operating  
parameters that is a vital role in biochar formation,  
which affects the yield of biochar and its surface  
properties (58). Different pyrolysis temperatures 
will affect the reactivity of biochar-based catalysts 
as it greatly reflects on the biochar’s physical and 
chemical properties (59). Wang et al. developed and 
compared sludge-derived biochar (SBC) with pyrolysis 
temperatures of 600 °C and 700 °C, and discovered  
that biochar at 600 °C has a catalytic activity of  
20% lesser than biochar at 700 °C. This might be  
due to the rise in carbon content and reduction in  
the biochar’s specific surface area (5). 

Studies have shown that doping heteroatoms such 
as sulfur (S), nitrogen (N),  boron (B), and phosphorus 
(P) can improve metal-free catalysts’ catalytic activity 
for decomposing persistent organics pollutants (60). 
The heteroatom introduction into catalyst materials 
can produce surface defects and therefore replace  
the intrinsic characteristics of the biochar which  
improves pore diameter and specific surface area, 
also increasing the active sites of the biochar (48).  
Comparing the heteroatoms, N-doped carbon 
materials have numerous N functional groups and 
higher defective sites, thus exhibiting excellent 
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catalytic activity (61). A study by Xu et al successfully  
produced N-doped biochar by using a ball milling 
process with ammonium hydroxide. The nitrogen-
doped biochar was then utilized for the adsorption  
of carbon dioxide and reactive red (62). Besides that,  
Mian et al developed nitrogen-doped biochar from 
sewage sludge processed by a single-step pyrolysis 
approach by the addition of different ratios of  
melamine with the biochar. The nitrogen-doped  
biochar was then utilized as a catalyst for the  
activation of peroxymonosulfate (PMS) (63). 

Another study developed microporous N-doped  
biochar attained from crop straws with ammonium 
chloride as the nitrogen precursor. By doping the 
biochar with ammonium chloride, the biochar  
increased in microporosity to 71.5%, with an atomic 
nitrogen percentage of 8.8, relatively about 15 to 
20 times higher than that of the initial biochar (64).  
Tian et al have proposed the usage of NaHCO

3
 for 

creating functional (S co-doped, N or N) porous with 
low-cost carbon precursors, wheat flour, and a few 
doping agents (32). It was then discovered that this 
porous carbon shows great results in applications  
such as water rectification, supercapacitors, and CO

2 

uptake oxygen reduction reaction (ORR) (32).

CONCLUSION

The application of sulfate radicals in advanced  
oxidation processes for the treatment of water and 
wastewater has grown significantly over the years.  
In this article, different methods of activation of sulfate 
radicals from PDS and PMS have been discussed  
focusing on the utilization of a carbon-based catalyst, 
biochar as a metal-free catalyst alternative. Metal 
catalysts are the most widespread activation method 
for SR-AOP, however, the main disadvantages of  
metal leaching and high concentration of ions in 
the water have moved researchers to find a greener 
alternative. Carbon-based catalysts give good results 
with the advantages of having a big specific surface 
area (SSA) and pore volume, great chemical and  
thermal stability, and are also cost-effective. It is 
important to know in depth the synthesis process of 
the biochar such as pyrolysis temperature, reaction 
time, and pyrolysis atmosphere in order to improve 
their structure to obtain an optimum catalytic activation  
of the radicals. The combination of heteroatoms such 
as sulfur, phosphorus, boron, and nitrogen can further 
enhance the catalytic activity. Currently, most of the 
studies on heteroatom-doped biochar catalysts focus 
on the N-doped biochar, due to having numerous 
N functional groups and higher defective sites, 
thus exhibiting excellent catalytic activity. In our  
perspectives, the application of SR-AOP by biochar 
in the degradation of EDCs includes (1) Development  
of low-cost efficient catalysts. In the field of SR-AOPs, 
the production of efficient and cost-effective catalysts 

is still the main focus of future research. Researchers 
need to study how to reduce the cost of catalyst 
preparation as the process requires high temperature 
and high pressure. (2) Improve toxicological studies 
of catalysts in the environment. Some catalysts 
may contain ingredients that are harmful to the  
environment. Therefore, it is necessary to consider  
the leaching of harmful ingredients into the  
environment and the impact on the environment.
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